diff options
author | xiubuzhe <xiubuzhe@sina.com> | 2023-10-08 20:59:00 +0800 |
---|---|---|
committer | xiubuzhe <xiubuzhe@sina.com> | 2023-10-08 20:59:00 +0800 |
commit | 1dac2263372df2b85db5d029a45721fa158a5c9d (patch) | |
tree | 0365f9c57df04178a726d7584ca6a6b955a7ce6a /lib/Crypto/PublicKey/ECC.py | |
parent | b494be364bb39e1de128ada7dc576a729d99907e (diff) | |
download | sunhpc-1dac2263372df2b85db5d029a45721fa158a5c9d.tar.gz sunhpc-1dac2263372df2b85db5d029a45721fa158a5c9d.tar.bz2 sunhpc-1dac2263372df2b85db5d029a45721fa158a5c9d.zip |
first add files
Diffstat (limited to 'lib/Crypto/PublicKey/ECC.py')
-rw-r--r-- | lib/Crypto/PublicKey/ECC.py | 1794 |
1 files changed, 1794 insertions, 0 deletions
diff --git a/lib/Crypto/PublicKey/ECC.py b/lib/Crypto/PublicKey/ECC.py new file mode 100644 index 0000000..0b605c4 --- /dev/null +++ b/lib/Crypto/PublicKey/ECC.py @@ -0,0 +1,1794 @@ +# =================================================================== +# +# Copyright (c) 2015, Legrandin <helderijs@gmail.com> +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +# =================================================================== + +from __future__ import print_function + +import re +import struct +import binascii +from collections import namedtuple + +from Crypto.Util.py3compat import bord, tobytes, tostr, bchr, is_string +from Crypto.Util.number import bytes_to_long, long_to_bytes + +from Crypto.Math.Numbers import Integer +from Crypto.Util.asn1 import (DerObjectId, DerOctetString, DerSequence, + DerBitString) + +from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, + SmartPointer, c_size_t, c_uint8_ptr, + c_ulonglong, null_pointer) + +from Crypto.PublicKey import (_expand_subject_public_key_info, + _create_subject_public_key_info, + _extract_subject_public_key_info) + +from Crypto.Hash import SHA512, SHAKE256 + +from Crypto.Random import get_random_bytes +from Crypto.Random.random import getrandbits + + +_ec_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ec_ws", """ +typedef void EcContext; +typedef void EcPoint; +int ec_ws_new_context(EcContext **pec_ctx, + const uint8_t *modulus, + const uint8_t *b, + const uint8_t *order, + size_t len, + uint64_t seed); +void ec_free_context(EcContext *ec_ctx); +int ec_ws_new_point(EcPoint **pecp, + const uint8_t *x, + const uint8_t *y, + size_t len, + const EcContext *ec_ctx); +void ec_ws_free_point(EcPoint *ecp); +int ec_ws_get_xy(uint8_t *x, + uint8_t *y, + size_t len, + const EcPoint *ecp); +int ec_ws_double(EcPoint *p); +int ec_ws_add(EcPoint *ecpa, EcPoint *ecpb); +int ec_ws_scalar(EcPoint *ecp, + const uint8_t *k, + size_t len, + uint64_t seed); +int ec_ws_clone(EcPoint **pecp2, const EcPoint *ecp); +int ec_ws_cmp(const EcPoint *ecp1, const EcPoint *ecp2); +int ec_ws_neg(EcPoint *p); +""") + +_ed25519_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed25519", """ +typedef void Point; +int ed25519_new_point(Point **out, + const uint8_t x[32], + const uint8_t y[32], + size_t modsize, + const void *context); +int ed25519_clone(Point **P, const Point *Q); +void ed25519_free_point(Point *p); +int ed25519_cmp(const Point *p1, const Point *p2); +int ed25519_neg(Point *p); +int ed25519_get_xy(uint8_t *xb, uint8_t *yb, size_t modsize, Point *p); +int ed25519_double(Point *p); +int ed25519_add(Point *P1, const Point *P2); +int ed25519_scalar(Point *P, uint8_t *scalar, size_t scalar_len, uint64_t seed); +""") + +_ed448_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed448", """ +typedef void EcContext; +typedef void PointEd448; +int ed448_new_context(EcContext **pec_ctx); +void ed448_context(EcContext *ec_ctx); +void ed448_free_context(EcContext *ec_ctx); +int ed448_new_point(PointEd448 **out, + const uint8_t x[56], + const uint8_t y[56], + size_t len, + const EcContext *context); +int ed448_clone(PointEd448 **P, const PointEd448 *Q); +void ed448_free_point(PointEd448 *p); +int ed448_cmp(const PointEd448 *p1, const PointEd448 *p2); +int ed448_neg(PointEd448 *p); +int ed448_get_xy(uint8_t *xb, uint8_t *yb, size_t len, const PointEd448 *p); +int ed448_double(PointEd448 *p); +int ed448_add(PointEd448 *P1, const PointEd448 *P2); +int ed448_scalar(PointEd448 *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed); +""") + + +def lib_func(ecc_obj, func_name): + if ecc_obj._curve.desc == "Ed25519": + result = getattr(_ed25519_lib, "ed25519_" + func_name) + elif ecc_obj._curve.desc == "Ed448": + result = getattr(_ed448_lib, "ed448_" + func_name) + else: + result = getattr(_ec_lib, "ec_ws_" + func_name) + return result + +# +# _curves is a database of curve parameters. Items are indexed by their +# human-friendly name, suchas "P-256". Each item has the following fields: +# - p: the prime number that defines the finite field for all modulo operations +# - b: the constant in the Short Weierstrass curve equation +# - order: the number of elements in the group with the generator below +# - Gx the affine coordinate X of the generator point +# - Gy the affine coordinate Y of the generator point +# - G the generator, as an EccPoint object +# - modulus_bits the minimum number of bits for encoding the modulus p +# - oid an ASCII string with the registered ASN.1 Object ID +# - context a raw pointer to memory holding a context for all curve operations (can be NULL) +# - desc an ASCII string describing the curve +# - openssh the ASCII string used in OpenSSH id files for public keys on this curve +# - name the ASCII string which is also a valid key in _curves + + +_Curve = namedtuple("_Curve", "p b order Gx Gy G modulus_bits oid context desc openssh name") +_curves = {} + + +p192_names = ["p192", "NIST P-192", "P-192", "prime192v1", "secp192r1", + "nistp192"] + + +def init_p192(): + p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff + b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 + order = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831 + Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 + Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 + + p192_modulus = long_to_bytes(p, 24) + p192_b = long_to_bytes(b, 24) + p192_order = long_to_bytes(order, 24) + + ec_p192_context = VoidPointer() + result = _ec_lib.ec_ws_new_context(ec_p192_context.address_of(), + c_uint8_ptr(p192_modulus), + c_uint8_ptr(p192_b), + c_uint8_ptr(p192_order), + c_size_t(len(p192_modulus)), + c_ulonglong(getrandbits(64)) + ) + if result: + raise ImportError("Error %d initializing P-192 context" % result) + + context = SmartPointer(ec_p192_context.get(), _ec_lib.ec_free_context) + p192 = _Curve(Integer(p), + Integer(b), + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 192, + "1.2.840.10045.3.1.1", # ANSI X9.62 / SEC2 + context, + "NIST P-192", + "ecdsa-sha2-nistp192", + "p192") + global p192_names + _curves.update(dict.fromkeys(p192_names, p192)) + + +init_p192() +del init_p192 + + +p224_names = ["p224", "NIST P-224", "P-224", "prime224v1", "secp224r1", + "nistp224"] + + +def init_p224(): + p = 0xffffffffffffffffffffffffffffffff000000000000000000000001 + b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4 + order = 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d + Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21 + Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34 + + p224_modulus = long_to_bytes(p, 28) + p224_b = long_to_bytes(b, 28) + p224_order = long_to_bytes(order, 28) + + ec_p224_context = VoidPointer() + result = _ec_lib.ec_ws_new_context(ec_p224_context.address_of(), + c_uint8_ptr(p224_modulus), + c_uint8_ptr(p224_b), + c_uint8_ptr(p224_order), + c_size_t(len(p224_modulus)), + c_ulonglong(getrandbits(64)) + ) + if result: + raise ImportError("Error %d initializing P-224 context" % result) + + context = SmartPointer(ec_p224_context.get(), _ec_lib.ec_free_context) + p224 = _Curve(Integer(p), + Integer(b), + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 224, + "1.3.132.0.33", # SEC 2 + context, + "NIST P-224", + "ecdsa-sha2-nistp224", + "p224") + global p224_names + _curves.update(dict.fromkeys(p224_names, p224)) + + +init_p224() +del init_p224 + + +p256_names = ["p256", "NIST P-256", "P-256", "prime256v1", "secp256r1", + "nistp256"] + + +def init_p256(): + p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff + b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b + order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 + Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 + Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 + + p256_modulus = long_to_bytes(p, 32) + p256_b = long_to_bytes(b, 32) + p256_order = long_to_bytes(order, 32) + + ec_p256_context = VoidPointer() + result = _ec_lib.ec_ws_new_context(ec_p256_context.address_of(), + c_uint8_ptr(p256_modulus), + c_uint8_ptr(p256_b), + c_uint8_ptr(p256_order), + c_size_t(len(p256_modulus)), + c_ulonglong(getrandbits(64)) + ) + if result: + raise ImportError("Error %d initializing P-256 context" % result) + + context = SmartPointer(ec_p256_context.get(), _ec_lib.ec_free_context) + p256 = _Curve(Integer(p), + Integer(b), + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 256, + "1.2.840.10045.3.1.7", # ANSI X9.62 / SEC2 + context, + "NIST P-256", + "ecdsa-sha2-nistp256", + "p256") + global p256_names + _curves.update(dict.fromkeys(p256_names, p256)) + + +init_p256() +del init_p256 + + +p384_names = ["p384", "NIST P-384", "P-384", "prime384v1", "secp384r1", + "nistp384"] + + +def init_p384(): + p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff + b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef + order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 + Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760aB7 + Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5F + + p384_modulus = long_to_bytes(p, 48) + p384_b = long_to_bytes(b, 48) + p384_order = long_to_bytes(order, 48) + + ec_p384_context = VoidPointer() + result = _ec_lib.ec_ws_new_context(ec_p384_context.address_of(), + c_uint8_ptr(p384_modulus), + c_uint8_ptr(p384_b), + c_uint8_ptr(p384_order), + c_size_t(len(p384_modulus)), + c_ulonglong(getrandbits(64)) + ) + if result: + raise ImportError("Error %d initializing P-384 context" % result) + + context = SmartPointer(ec_p384_context.get(), _ec_lib.ec_free_context) + p384 = _Curve(Integer(p), + Integer(b), + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 384, + "1.3.132.0.34", # SEC 2 + context, + "NIST P-384", + "ecdsa-sha2-nistp384", + "p384") + global p384_names + _curves.update(dict.fromkeys(p384_names, p384)) + + +init_p384() +del init_p384 + + +p521_names = ["p521", "NIST P-521", "P-521", "prime521v1", "secp521r1", + "nistp521"] + + +def init_p521(): + p = 0x000001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff + b = 0x00000051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 + order = 0x000001fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409 + Gx = 0x000000c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 + Gy = 0x0000011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 + + p521_modulus = long_to_bytes(p, 66) + p521_b = long_to_bytes(b, 66) + p521_order = long_to_bytes(order, 66) + + ec_p521_context = VoidPointer() + result = _ec_lib.ec_ws_new_context(ec_p521_context.address_of(), + c_uint8_ptr(p521_modulus), + c_uint8_ptr(p521_b), + c_uint8_ptr(p521_order), + c_size_t(len(p521_modulus)), + c_ulonglong(getrandbits(64)) + ) + if result: + raise ImportError("Error %d initializing P-521 context" % result) + + context = SmartPointer(ec_p521_context.get(), _ec_lib.ec_free_context) + p521 = _Curve(Integer(p), + Integer(b), + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 521, + "1.3.132.0.35", # SEC 2 + context, + "NIST P-521", + "ecdsa-sha2-nistp521", + "p521") + global p521_names + _curves.update(dict.fromkeys(p521_names, p521)) + + +init_p521() +del init_p521 + + +ed25519_names = ["ed25519", "Ed25519"] + + +def init_ed25519(): + p = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed # 2**255 - 19 + order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed + Gx = 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a + Gy = 0x6666666666666666666666666666666666666666666666666666666666666658 + + ed25519 = _Curve(Integer(p), + None, + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 255, + "1.3.101.112", # RFC8410 + None, + "Ed25519", # Used throughout; do not change + "ssh-ed25519", + "ed25519") + global ed25519_names + _curves.update(dict.fromkeys(ed25519_names, ed25519)) + + +init_ed25519() +del init_ed25519 + + +ed448_names = ["ed448", "Ed448"] + + +def init_ed448(): + p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff # 2**448 - 2**224 - 1 + order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3 + Gx = 0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e + Gy = 0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14 + + ed448_context = VoidPointer() + result = _ed448_lib.ed448_new_context(ed448_context.address_of()) + if result: + raise ImportError("Error %d initializing Ed448 context" % result) + + context = SmartPointer(ed448_context.get(), _ed448_lib.ed448_free_context) + + ed448 = _Curve(Integer(p), + None, + Integer(order), + Integer(Gx), + Integer(Gy), + None, + 448, + "1.3.101.113", # RFC8410 + context, + "Ed448", # Used throughout; do not change + None, + "ed448") + global ed448_names + _curves.update(dict.fromkeys(ed448_names, ed448)) + + +init_ed448() +del init_ed448 + + +class UnsupportedEccFeature(ValueError): + pass + + +class EccPoint(object): + """A class to model a point on an Elliptic Curve. + + The class supports operators for: + + * Adding two points: ``R = S + T`` + * In-place addition: ``S += T`` + * Negating a point: ``R = -T`` + * Comparing two points: ``if S == T: ...`` or ``if S != T: ...`` + * Multiplying a point by a scalar: ``R = S*k`` + * In-place multiplication by a scalar: ``T *= k`` + + :ivar x: The affine X-coordinate of the ECC point + :vartype x: integer + + :ivar y: The affine Y-coordinate of the ECC point + :vartype y: integer + + :ivar xy: The tuple with affine X- and Y- coordinates + """ + + def __init__(self, x, y, curve="p256"): + + try: + self._curve = _curves[curve] + except KeyError: + raise ValueError("Unknown curve name %s" % str(curve)) + self._curve_name = curve + + modulus_bytes = self.size_in_bytes() + + xb = long_to_bytes(x, modulus_bytes) + yb = long_to_bytes(y, modulus_bytes) + if len(xb) != modulus_bytes or len(yb) != modulus_bytes: + raise ValueError("Incorrect coordinate length") + + new_point = lib_func(self, "new_point") + free_func = lib_func(self, "free_point") + + self._point = VoidPointer() + try: + context = self._curve.context.get() + except AttributeError: + context = null_pointer + result = new_point(self._point.address_of(), + c_uint8_ptr(xb), + c_uint8_ptr(yb), + c_size_t(modulus_bytes), + context) + + if result: + if result == 15: + raise ValueError("The EC point does not belong to the curve") + raise ValueError("Error %d while instantiating an EC point" % result) + + # Ensure that object disposal of this Python object will (eventually) + # free the memory allocated by the raw library for the EC point + self._point = SmartPointer(self._point.get(), free_func) + + def set(self, point): + clone = lib_func(self, "clone") + free_func = lib_func(self, "free_point") + + self._point = VoidPointer() + result = clone(self._point.address_of(), + point._point.get()) + + if result: + raise ValueError("Error %d while cloning an EC point" % result) + + self._point = SmartPointer(self._point.get(), free_func) + return self + + def __eq__(self, point): + cmp_func = lib_func(self, "cmp") + return 0 == cmp_func(self._point.get(), point._point.get()) + + # Only needed for Python 2 + def __ne__(self, point): + return not self == point + + def __neg__(self): + neg_func = lib_func(self, "neg") + np = self.copy() + result = neg_func(np._point.get()) + if result: + raise ValueError("Error %d while inverting an EC point" % result) + return np + + def copy(self): + """Return a copy of this point.""" + x, y = self.xy + np = EccPoint(x, y, self._curve_name) + return np + + def _is_eddsa(self): + return self._curve.name in ("ed25519", "ed448") + + def is_point_at_infinity(self): + """``True`` if this is the *point-at-infinity*.""" + + if self._is_eddsa(): + return self.x == 0 + else: + return self.xy == (0, 0) + + def point_at_infinity(self): + """Return the *point-at-infinity* for the curve.""" + + if self._is_eddsa(): + return EccPoint(0, 1, self._curve_name) + else: + return EccPoint(0, 0, self._curve_name) + + @property + def x(self): + return self.xy[0] + + @property + def y(self): + return self.xy[1] + + @property + def xy(self): + modulus_bytes = self.size_in_bytes() + xb = bytearray(modulus_bytes) + yb = bytearray(modulus_bytes) + get_xy = lib_func(self, "get_xy") + result = get_xy(c_uint8_ptr(xb), + c_uint8_ptr(yb), + c_size_t(modulus_bytes), + self._point.get()) + if result: + raise ValueError("Error %d while encoding an EC point" % result) + + return (Integer(bytes_to_long(xb)), Integer(bytes_to_long(yb))) + + def size_in_bytes(self): + """Size of each coordinate, in bytes.""" + return (self.size_in_bits() + 7) // 8 + + def size_in_bits(self): + """Size of each coordinate, in bits.""" + return self._curve.modulus_bits + + def double(self): + """Double this point (in-place operation). + + Returns: + This same object (to enable chaining). + """ + + double_func = lib_func(self, "double") + result = double_func(self._point.get()) + if result: + raise ValueError("Error %d while doubling an EC point" % result) + return self + + def __iadd__(self, point): + """Add a second point to this one""" + + add_func = lib_func(self, "add") + result = add_func(self._point.get(), point._point.get()) + if result: + if result == 16: + raise ValueError("EC points are not on the same curve") + raise ValueError("Error %d while adding two EC points" % result) + return self + + def __add__(self, point): + """Return a new point, the addition of this one and another""" + + np = self.copy() + np += point + return np + + def __imul__(self, scalar): + """Multiply this point by a scalar""" + + scalar_func = lib_func(self, "scalar") + if scalar < 0: + raise ValueError("Scalar multiplication is only defined for non-negative integers") + sb = long_to_bytes(scalar) + result = scalar_func(self._point.get(), + c_uint8_ptr(sb), + c_size_t(len(sb)), + c_ulonglong(getrandbits(64))) + if result: + raise ValueError("Error %d during scalar multiplication" % result) + return self + + def __mul__(self, scalar): + """Return a new point, the scalar product of this one""" + + np = self.copy() + np *= scalar + return np + + def __rmul__(self, left_hand): + return self.__mul__(left_hand) + + +# Last piece of initialization +p192_G = EccPoint(_curves['p192'].Gx, _curves['p192'].Gy, "p192") +p192 = _curves['p192']._replace(G=p192_G) +_curves.update(dict.fromkeys(p192_names, p192)) +del p192_G, p192, p192_names + +p224_G = EccPoint(_curves['p224'].Gx, _curves['p224'].Gy, "p224") +p224 = _curves['p224']._replace(G=p224_G) +_curves.update(dict.fromkeys(p224_names, p224)) +del p224_G, p224, p224_names + +p256_G = EccPoint(_curves['p256'].Gx, _curves['p256'].Gy, "p256") +p256 = _curves['p256']._replace(G=p256_G) +_curves.update(dict.fromkeys(p256_names, p256)) +del p256_G, p256, p256_names + +p384_G = EccPoint(_curves['p384'].Gx, _curves['p384'].Gy, "p384") +p384 = _curves['p384']._replace(G=p384_G) +_curves.update(dict.fromkeys(p384_names, p384)) +del p384_G, p384, p384_names + +p521_G = EccPoint(_curves['p521'].Gx, _curves['p521'].Gy, "p521") +p521 = _curves['p521']._replace(G=p521_G) +_curves.update(dict.fromkeys(p521_names, p521)) +del p521_G, p521, p521_names + +ed25519_G = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, "Ed25519") +ed25519 = _curves['Ed25519']._replace(G=ed25519_G) +_curves.update(dict.fromkeys(ed25519_names, ed25519)) +del ed25519_G, ed25519, ed25519_names + +ed448_G = EccPoint(_curves['Ed448'].Gx, _curves['Ed448'].Gy, "Ed448") +ed448 = _curves['Ed448']._replace(G=ed448_G) +_curves.update(dict.fromkeys(ed448_names, ed448)) +del ed448_G, ed448, ed448_names + + +class EccKey(object): + r"""Class defining an ECC key. + Do not instantiate directly. + Use :func:`generate`, :func:`construct` or :func:`import_key` instead. + + :ivar curve: The name of the curve as defined in the `ECC table`_. + :vartype curve: string + + :ivar pointQ: an ECC point representating the public component. + :vartype pointQ: :class:`EccPoint` + + :ivar d: A scalar that represents the private component + in NIST P curves. It is smaller than the + order of the generator point. + :vartype d: integer + + :ivar seed: A seed that representats the private component + in EdDSA curves + (Ed25519, 32 bytes; Ed448, 57 bytes). + :vartype seed: bytes + """ + + def __init__(self, **kwargs): + """Create a new ECC key + + Keywords: + curve : string + The name of the curve. + d : integer + Mandatory for a private key one NIST P curves. + It must be in the range ``[1..order-1]``. + seed : bytes + Mandatory for a private key on the Ed25519 (32 bytes) + or Ed448 (57 bytes) curve. + point : EccPoint + Mandatory for a public key. If provided for a private key, + the implementation will NOT check whether it matches ``d``. + + Only one parameter among ``d``, ``seed`` or ``point`` may be used. + """ + + kwargs_ = dict(kwargs) + curve_name = kwargs_.pop("curve", None) + self._d = kwargs_.pop("d", None) + self._seed = kwargs_.pop("seed", None) + self._point = kwargs_.pop("point", None) + if curve_name is None and self._point: + curve_name = self._point._curve_name + if kwargs_: + raise TypeError("Unknown parameters: " + str(kwargs_)) + + if curve_name not in _curves: + raise ValueError("Unsupported curve (%s)" % curve_name) + self._curve = _curves[curve_name] + self.curve = curve_name + + count = int(self._d is not None) + int(self._seed is not None) + + if count == 0: + if self._point is None: + raise ValueError("At lest one between parameters 'point', 'd' or 'seed' must be specified") + return + + if count == 2: + raise ValueError("Parameters d and seed are mutually exclusive") + + # NIST P curves work with d, EdDSA works with seed + + if not self._is_eddsa(): + if self._seed is not None: + raise ValueError("Parameter 'seed' can only be used with Ed25519 or Ed448") + self._d = Integer(self._d) + if not 1 <= self._d < self._curve.order: + raise ValueError("Parameter d must be an integer smaller than the curve order") + else: + if self._d is not None: + raise ValueError("Parameter d can only be used with NIST P curves") + # RFC 8032, 5.1.5 + if self._curve.name == "ed25519": + if len(self._seed) != 32: + raise ValueError("Parameter seed must be 32 bytes long for Ed25519") + seed_hash = SHA512.new(self._seed).digest() # h + self._prefix = seed_hash[32:] + tmp = bytearray(seed_hash[:32]) + tmp[0] &= 0xF8 + tmp[31] = (tmp[31] & 0x7F) | 0x40 + # RFC 8032, 5.2.5 + elif self._curve.name == "ed448": + if len(self._seed) != 57: + raise ValueError("Parameter seed must be 57 bytes long for Ed448") + seed_hash = SHAKE256.new(self._seed).read(114) # h + self._prefix = seed_hash[57:] + tmp = bytearray(seed_hash[:57]) + tmp[0] &= 0xFC + tmp[55] |= 0x80 + tmp[56] = 0 + self._d = Integer.from_bytes(tmp, byteorder='little') + + def _is_eddsa(self): + return self._curve.desc in ("Ed25519", "Ed448") + + def __eq__(self, other): + if other.has_private() != self.has_private(): + return False + + return other.pointQ == self.pointQ + + def __repr__(self): + if self.has_private(): + if self._is_eddsa(): + extra = ", seed=%s" % self._seed.hex() + else: + extra = ", d=%d" % int(self._d) + else: + extra = "" + x, y = self.pointQ.xy + return "EccKey(curve='%s', point_x=%d, point_y=%d%s)" % (self._curve.desc, x, y, extra) + + def has_private(self): + """``True`` if this key can be used for making signatures or decrypting data.""" + + return self._d is not None + + # ECDSA + def _sign(self, z, k): + assert 0 < k < self._curve.order + + order = self._curve.order + blind = Integer.random_range(min_inclusive=1, + max_exclusive=order) + + blind_d = self._d * blind + inv_blind_k = (blind * k).inverse(order) + + r = (self._curve.G * k).x % order + s = inv_blind_k * (blind * z + blind_d * r) % order + return (r, s) + + # ECDSA + def _verify(self, z, rs): + order = self._curve.order + sinv = rs[1].inverse(order) + point1 = self._curve.G * ((sinv * z) % order) + point2 = self.pointQ * ((sinv * rs[0]) % order) + return (point1 + point2).x == rs[0] + + @property + def d(self): + if not self.has_private(): + raise ValueError("This is not a private ECC key") + return self._d + + @property + def seed(self): + if not self.has_private(): + raise ValueError("This is not a private ECC key") + return self._seed + + @property + def pointQ(self): + if self._point is None: + self._point = self._curve.G * self._d + return self._point + + def public_key(self): + """A matching ECC public key. + + Returns: + a new :class:`EccKey` object + """ + + return EccKey(curve=self._curve.desc, point=self.pointQ) + + def _export_SEC1(self, compress): + if self._is_eddsa(): + raise ValueError("SEC1 format is unsupported for EdDSA curves") + + # See 2.2 in RFC5480 and 2.3.3 in SEC1 + # + # The first byte is: + # - 0x02: compressed, only X-coordinate, Y-coordinate is even + # - 0x03: compressed, only X-coordinate, Y-coordinate is odd + # - 0x04: uncompressed, X-coordinate is followed by Y-coordinate + # + # PAI is in theory encoded as 0x00. + + modulus_bytes = self.pointQ.size_in_bytes() + + if compress: + if self.pointQ.y.is_odd(): + first_byte = b'\x03' + else: + first_byte = b'\x02' + public_key = (first_byte + + self.pointQ.x.to_bytes(modulus_bytes)) + else: + public_key = (b'\x04' + + self.pointQ.x.to_bytes(modulus_bytes) + + self.pointQ.y.to_bytes(modulus_bytes)) + return public_key + + def _export_eddsa(self): + x, y = self.pointQ.xy + if self._curve.name == "ed25519": + result = bytearray(y.to_bytes(32, byteorder='little')) + result[31] = ((x & 1) << 7) | result[31] + elif self._curve.name == "ed448": + result = bytearray(y.to_bytes(57, byteorder='little')) + result[56] = (x & 1) << 7 + else: + raise ValueError("Not an EdDSA key to export") + return bytes(result) + + def _export_subjectPublicKeyInfo(self, compress): + if self._is_eddsa(): + oid = self._curve.oid + public_key = self._export_eddsa() + params = None + else: + oid = "1.2.840.10045.2.1" # unrestricted + public_key = self._export_SEC1(compress) + params = DerObjectId(self._curve.oid) + + return _create_subject_public_key_info(oid, + public_key, + params) + + def _export_rfc5915_private_der(self, include_ec_params=True): + + assert self.has_private() + + # ECPrivateKey ::= SEQUENCE { + # version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1), + # privateKey OCTET STRING, + # parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, + # publicKey [1] BIT STRING OPTIONAL + # } + + # Public key - uncompressed form + modulus_bytes = self.pointQ.size_in_bytes() + public_key = (b'\x04' + + self.pointQ.x.to_bytes(modulus_bytes) + + self.pointQ.y.to_bytes(modulus_bytes)) + + seq = [1, + DerOctetString(self.d.to_bytes(modulus_bytes)), + DerObjectId(self._curve.oid, explicit=0), + DerBitString(public_key, explicit=1)] + + if not include_ec_params: + del seq[2] + + return DerSequence(seq).encode() + + def _export_pkcs8(self, **kwargs): + from Crypto.IO import PKCS8 + + if kwargs.get('passphrase', None) is not None and 'protection' not in kwargs: + raise ValueError("At least the 'protection' parameter should be present") + + if self._is_eddsa(): + oid = self._curve.oid + private_key = DerOctetString(self._seed).encode() + params = None + else: + oid = "1.2.840.10045.2.1" # unrestricted + private_key = self._export_rfc5915_private_der(include_ec_params=False) + params = DerObjectId(self._curve.oid) + + result = PKCS8.wrap(private_key, + oid, + key_params=params, + **kwargs) + return result + + def _export_public_pem(self, compress): + from Crypto.IO import PEM + + encoded_der = self._export_subjectPublicKeyInfo(compress) + return PEM.encode(encoded_der, "PUBLIC KEY") + + def _export_private_pem(self, passphrase, **kwargs): + from Crypto.IO import PEM + + encoded_der = self._export_rfc5915_private_der() + return PEM.encode(encoded_der, "EC PRIVATE KEY", passphrase, **kwargs) + + def _export_private_clear_pkcs8_in_clear_pem(self): + from Crypto.IO import PEM + + encoded_der = self._export_pkcs8() + return PEM.encode(encoded_der, "PRIVATE KEY") + + def _export_private_encrypted_pkcs8_in_clear_pem(self, passphrase, **kwargs): + from Crypto.IO import PEM + + assert passphrase + if 'protection' not in kwargs: + raise ValueError("At least the 'protection' parameter should be present") + encoded_der = self._export_pkcs8(passphrase=passphrase, **kwargs) + return PEM.encode(encoded_der, "ENCRYPTED PRIVATE KEY") + + def _export_openssh(self, compress): + if self.has_private(): + raise ValueError("Cannot export OpenSSH private keys") + + desc = self._curve.openssh + + if desc is None: + raise ValueError("Cannot export %s keys as OpenSSH" % self._curve.name) + elif desc == "ssh-ed25519": + public_key = self._export_eddsa() + comps = (tobytes(desc), tobytes(public_key)) + else: + modulus_bytes = self.pointQ.size_in_bytes() + + if compress: + first_byte = 2 + self.pointQ.y.is_odd() + public_key = (bchr(first_byte) + + self.pointQ.x.to_bytes(modulus_bytes)) + else: + public_key = (b'\x04' + + self.pointQ.x.to_bytes(modulus_bytes) + + self.pointQ.y.to_bytes(modulus_bytes)) + + middle = desc.split("-")[2] + comps = (tobytes(desc), tobytes(middle), public_key) + + blob = b"".join([struct.pack(">I", len(x)) + x for x in comps]) + return desc + " " + tostr(binascii.b2a_base64(blob)) + + def export_key(self, **kwargs): + """Export this ECC key. + + Args: + format (string): + The format to use for encoding the key: + + - ``'DER'``. The key will be encoded in ASN.1 DER format (binary). + For a public key, the ASN.1 ``subjectPublicKeyInfo`` structure + defined in `RFC5480`_ will be used. + For a private key, the ASN.1 ``ECPrivateKey`` structure defined + in `RFC5915`_ is used instead (possibly within a PKCS#8 envelope, + see the ``use_pkcs8`` flag below). + - ``'PEM'``. The key will be encoded in a PEM_ envelope (ASCII). + - ``'OpenSSH'``. The key will be encoded in the OpenSSH_ format + (ASCII, public keys only). + - ``'SEC1'``. The public key (i.e., the EC point) will be encoded + into ``bytes`` according to Section 2.3.3 of `SEC1`_ + (which is a subset of the older X9.62 ITU standard). + Only for NIST P-curves. + - ``'raw'``. The public key will be encoded as ``bytes``, + without any metadata. + + * For NIST P-curves: equivalent to ``'SEC1'``. + * For EdDSA curves: ``bytes`` in the format defined in `RFC8032`_. + + passphrase (byte string or string): + The passphrase to use for protecting the private key. + + use_pkcs8 (boolean): + Only relevant for private keys. + + If ``True`` (default and recommended), the `PKCS#8`_ representation + will be used. It must be ``True`` for EdDSA curves. + + protection (string): + When a private key is exported with password-protection + and PKCS#8 (both ``DER`` and ``PEM`` formats), this parameter MUST be + present and be a valid algorithm supported by :mod:`Crypto.IO.PKCS8`. + It is recommended to use ``PBKDF2WithHMAC-SHA1AndAES128-CBC``. + + compress (boolean): + If ``True``, the method returns a more compact representation + of the public key, with the X-coordinate only. + + If ``False`` (default), the method returns the full public key. + + This parameter is ignored for EdDSA curves, as compression is + mandatory. + + .. warning:: + If you don't provide a passphrase, the private key will be + exported in the clear! + + .. note:: + When exporting a private key with password-protection and `PKCS#8`_ + (both ``DER`` and ``PEM`` formats), any extra parameters + to ``export_key()`` will be passed to :mod:`Crypto.IO.PKCS8`. + + .. _PEM: http://www.ietf.org/rfc/rfc1421.txt + .. _`PEM encryption`: http://www.ietf.org/rfc/rfc1423.txt + .. _OpenSSH: http://www.openssh.com/txt/rfc5656.txt + .. _RFC5480: https://tools.ietf.org/html/rfc5480 + .. _SEC1: https://www.secg.org/sec1-v2.pdf + + Returns: + A multi-line string (for ``'PEM'`` and ``'OpenSSH'``) or + ``bytes`` (for ``'DER'``, ``'SEC1'``, and ``'raw'``) with the encoded key. + """ + + args = kwargs.copy() + ext_format = args.pop("format") + if ext_format not in ("PEM", "DER", "OpenSSH", "SEC1", "raw"): + raise ValueError("Unknown format '%s'" % ext_format) + + compress = args.pop("compress", False) + + if self.has_private(): + passphrase = args.pop("passphrase", None) + if is_string(passphrase): + passphrase = tobytes(passphrase) + if not passphrase: + raise ValueError("Empty passphrase") + use_pkcs8 = args.pop("use_pkcs8", True) + + if not use_pkcs8 and self._is_eddsa(): + raise ValueError("'pkcs8' must be True for EdDSA curves") + + if ext_format == "PEM": + if use_pkcs8: + if passphrase: + return self._export_private_encrypted_pkcs8_in_clear_pem(passphrase, **args) + else: + return self._export_private_clear_pkcs8_in_clear_pem() + else: + return self._export_private_pem(passphrase, **args) + elif ext_format == "DER": + # DER + if passphrase and not use_pkcs8: + raise ValueError("Private keys can only be encrpyted with DER using PKCS#8") + if use_pkcs8: + return self._export_pkcs8(passphrase=passphrase, **args) + else: + return self._export_rfc5915_private_der() + else: + raise ValueError("Private keys cannot be exported " + "in the '%s' format" % ext_format) + else: # Public key + if args: + raise ValueError("Unexpected parameters: '%s'" % args) + if ext_format == "PEM": + return self._export_public_pem(compress) + elif ext_format == "DER": + return self._export_subjectPublicKeyInfo(compress) + elif ext_format == "SEC1": + return self._export_SEC1(compress) + elif ext_format == "raw": + if self._curve.name in ('ed25519', 'ed448'): + return self._export_eddsa() + else: + return self._export_SEC1(compress) + else: + return self._export_openssh(compress) + + +def generate(**kwargs): + """Generate a new private key on the given curve. + + Args: + + curve (string): + Mandatory. It must be a curve name defined in the `ECC table`_. + + randfunc (callable): + Optional. The RNG to read randomness from. + If ``None``, :func:`Crypto.Random.get_random_bytes` is used. + """ + + curve_name = kwargs.pop("curve") + curve = _curves[curve_name] + randfunc = kwargs.pop("randfunc", get_random_bytes) + if kwargs: + raise TypeError("Unknown parameters: " + str(kwargs)) + + if _curves[curve_name].name == "ed25519": + seed = randfunc(32) + new_key = EccKey(curve=curve_name, seed=seed) + elif _curves[curve_name].name == "ed448": + seed = randfunc(57) + new_key = EccKey(curve=curve_name, seed=seed) + else: + d = Integer.random_range(min_inclusive=1, + max_exclusive=curve.order, + randfunc=randfunc) + new_key = EccKey(curve=curve_name, d=d) + + return new_key + + +def construct(**kwargs): + """Build a new ECC key (private or public) starting + from some base components. + + In most cases, you will already have an existing key + which you can read in with :func:`import_key` instead + of this function. + + Args: + curve (string): + Mandatory. The name of the elliptic curve, as defined in the `ECC table`_. + + d (integer): + Mandatory for a private key and a NIST P-curve (e.g., P-256): + the integer in the range ``[1..order-1]`` that represents the key. + + seed (bytes): + Mandatory for a private key and an EdDSA curve. + It must be 32 bytes for Ed25519, and 57 bytes for Ed448. + + point_x (integer): + Mandatory for a public key: the X coordinate (affine) of the ECC point. + + point_y (integer): + Mandatory for a public key: the Y coordinate (affine) of the ECC point. + + Returns: + :class:`EccKey` : a new ECC key object + """ + + curve_name = kwargs["curve"] + curve = _curves[curve_name] + point_x = kwargs.pop("point_x", None) + point_y = kwargs.pop("point_y", None) + + if "point" in kwargs: + raise TypeError("Unknown keyword: point") + + if None not in (point_x, point_y): + # ValueError is raised if the point is not on the curve + kwargs["point"] = EccPoint(point_x, point_y, curve_name) + + new_key = EccKey(**kwargs) + + # Validate that the private key matches the public one + # because EccKey will not do that automatically + if new_key.has_private() and 'point' in kwargs: + pub_key = curve.G * new_key.d + if pub_key.xy != (point_x, point_y): + raise ValueError("Private and public ECC keys do not match") + + return new_key + + +def _import_public_der(ec_point, curve_oid=None, curve_name=None): + """Convert an encoded EC point into an EccKey object + + ec_point: byte string with the EC point (SEC1-encoded) + curve_oid: string with the name the curve + curve_name: string with the OID of the curve + + Either curve_id or curve_name must be specified + + """ + + for _curve_name, curve in _curves.items(): + if curve_oid and curve.oid == curve_oid: + break + if curve_name == _curve_name: + break + else: + if curve_oid: + raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid) + else: + raise UnsupportedEccFeature("Unsupported ECC curve (%s)" % curve_name) + + # See 2.2 in RFC5480 and 2.3.3 in SEC1 + # The first byte is: + # - 0x02: compressed, only X-coordinate, Y-coordinate is even + # - 0x03: compressed, only X-coordinate, Y-coordinate is odd + # - 0x04: uncompressed, X-coordinate is followed by Y-coordinate + # + # PAI is in theory encoded as 0x00. + + modulus_bytes = curve.p.size_in_bytes() + point_type = bord(ec_point[0]) + + # Uncompressed point + if point_type == 0x04: + if len(ec_point) != (1 + 2 * modulus_bytes): + raise ValueError("Incorrect EC point length") + x = Integer.from_bytes(ec_point[1:modulus_bytes+1]) + y = Integer.from_bytes(ec_point[modulus_bytes+1:]) + # Compressed point + elif point_type in (0x02, 0x03): + if len(ec_point) != (1 + modulus_bytes): + raise ValueError("Incorrect EC point length") + x = Integer.from_bytes(ec_point[1:]) + # Right now, we only support Short Weierstrass curves + y = (x**3 - x*3 + curve.b).sqrt(curve.p) + if point_type == 0x02 and y.is_odd(): + y = curve.p - y + if point_type == 0x03 and y.is_even(): + y = curve.p - y + else: + raise ValueError("Incorrect EC point encoding") + + return construct(curve=_curve_name, point_x=x, point_y=y) + + +def _import_subjectPublicKeyInfo(encoded, *kwargs): + """Convert a subjectPublicKeyInfo into an EccKey object""" + + # See RFC5480 + + # Parse the generic subjectPublicKeyInfo structure + oid, ec_point, params = _expand_subject_public_key_info(encoded) + + nist_p_oids = ( + "1.2.840.10045.2.1", # id-ecPublicKey (unrestricted) + "1.3.132.1.12", # id-ecDH + "1.3.132.1.13" # id-ecMQV + ) + eddsa_oids = { + "1.3.101.112": ("Ed25519", _import_ed25519_public_key), # id-Ed25519 + "1.3.101.113": ("Ed448", _import_ed448_public_key) # id-Ed448 + } + + if oid in nist_p_oids: + # See RFC5480 + + # Parameters are mandatory and encoded as ECParameters + # ECParameters ::= CHOICE { + # namedCurve OBJECT IDENTIFIER + # -- implicitCurve NULL + # -- specifiedCurve SpecifiedECDomain + # } + # implicitCurve and specifiedCurve are not supported (as per RFC) + if not params: + raise ValueError("Missing ECC parameters for ECC OID %s" % oid) + try: + curve_oid = DerObjectId().decode(params).value + except ValueError: + raise ValueError("Error decoding namedCurve") + + # ECPoint ::= OCTET STRING + return _import_public_der(ec_point, curve_oid=curve_oid) + + elif oid in eddsa_oids: + # See RFC8410 + curve_name, import_eddsa_public_key = eddsa_oids[oid] + + # Parameters must be absent + if params: + raise ValueError("Unexpected ECC parameters for ECC OID %s" % oid) + + x, y = import_eddsa_public_key(ec_point) + return construct(point_x=x, point_y=y, curve=curve_name) + else: + raise UnsupportedEccFeature("Unsupported ECC OID: %s" % oid) + + +def _import_rfc5915_der(encoded, passphrase, curve_oid=None): + + # See RFC5915 https://tools.ietf.org/html/rfc5915 + # + # ECPrivateKey ::= SEQUENCE { + # version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1), + # privateKey OCTET STRING, + # parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, + # publicKey [1] BIT STRING OPTIONAL + # } + + private_key = DerSequence().decode(encoded, nr_elements=(3, 4)) + if private_key[0] != 1: + raise ValueError("Incorrect ECC private key version") + + try: + parameters = DerObjectId(explicit=0).decode(private_key[2]).value + if curve_oid is not None and parameters != curve_oid: + raise ValueError("Curve mismatch") + curve_oid = parameters + except ValueError: + pass + + if curve_oid is None: + raise ValueError("No curve found") + + for curve_name, curve in _curves.items(): + if curve.oid == curve_oid: + break + else: + raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid) + + scalar_bytes = DerOctetString().decode(private_key[1]).payload + modulus_bytes = curve.p.size_in_bytes() + if len(scalar_bytes) != modulus_bytes: + raise ValueError("Private key is too small") + d = Integer.from_bytes(scalar_bytes) + + # Decode public key (if any) + if len(private_key) == 4: + public_key_enc = DerBitString(explicit=1).decode(private_key[3]).value + public_key = _import_public_der(public_key_enc, curve_oid=curve_oid) + point_x = public_key.pointQ.x + point_y = public_key.pointQ.y + else: + point_x = point_y = None + + return construct(curve=curve_name, d=d, point_x=point_x, point_y=point_y) + + +def _import_pkcs8(encoded, passphrase): + from Crypto.IO import PKCS8 + + algo_oid, private_key, params = PKCS8.unwrap(encoded, passphrase) + + nist_p_oids = ( + "1.2.840.10045.2.1", # id-ecPublicKey (unrestricted) + "1.3.132.1.12", # id-ecDH + "1.3.132.1.13" # id-ecMQV + ) + eddsa_oids = { + "1.3.101.112": "Ed25519", # id-Ed25519 + "1.3.101.113": "Ed448", # id-Ed448 + } + + if algo_oid in nist_p_oids: + curve_oid = DerObjectId().decode(params).value + return _import_rfc5915_der(private_key, passphrase, curve_oid) + elif algo_oid in eddsa_oids: + if params is not None: + raise ValueError("EdDSA ECC private key must not have parameters") + curve_oid = None + seed = DerOctetString().decode(private_key).payload + return construct(curve=eddsa_oids[algo_oid], seed=seed) + else: + raise UnsupportedEccFeature("Unsupported ECC purpose (OID: %s)" % algo_oid) + + +def _import_x509_cert(encoded, *kwargs): + + sp_info = _extract_subject_public_key_info(encoded) + return _import_subjectPublicKeyInfo(sp_info) + + +def _import_der(encoded, passphrase): + + try: + return _import_subjectPublicKeyInfo(encoded, passphrase) + except UnsupportedEccFeature as err: + raise err + except (ValueError, TypeError, IndexError): + pass + + try: + return _import_x509_cert(encoded, passphrase) + except UnsupportedEccFeature as err: + raise err + except (ValueError, TypeError, IndexError): + pass + + try: + return _import_rfc5915_der(encoded, passphrase) + except UnsupportedEccFeature as err: + raise err + except (ValueError, TypeError, IndexError): + pass + + try: + return _import_pkcs8(encoded, passphrase) + except UnsupportedEccFeature as err: + raise err + except (ValueError, TypeError, IndexError): + pass + + raise ValueError("Not an ECC DER key") + + +def _import_openssh_public(encoded): + parts = encoded.split(b' ') + if len(parts) not in (2, 3): + raise ValueError("Not an openssh public key") + + try: + keystring = binascii.a2b_base64(parts[1]) + + keyparts = [] + while len(keystring) > 4: + lk = struct.unpack(">I", keystring[:4])[0] + keyparts.append(keystring[4:4 + lk]) + keystring = keystring[4 + lk:] + + if parts[0] != keyparts[0]: + raise ValueError("Mismatch in openssh public key") + + # NIST P curves + if parts[0].startswith(b"ecdsa-sha2-"): + + for curve_name, curve in _curves.items(): + if curve.openssh is None: + continue + if not curve.openssh.startswith("ecdsa-sha2"): + continue + middle = tobytes(curve.openssh.split("-")[2]) + if keyparts[1] == middle: + break + else: + raise ValueError("Unsupported ECC curve: " + middle) + + ecc_key = _import_public_der(keyparts[2], curve_oid=curve.oid) + + # EdDSA + elif parts[0] == b"ssh-ed25519": + x, y = _import_ed25519_public_key(keyparts[1]) + ecc_key = construct(curve="Ed25519", point_x=x, point_y=y) + else: + raise ValueError("Unsupported SSH key type: " + parts[0]) + + except (IndexError, TypeError, binascii.Error): + raise ValueError("Error parsing SSH key type: " + parts[0]) + + return ecc_key + + +def _import_openssh_private_ecc(data, password): + + from ._openssh import (import_openssh_private_generic, + read_bytes, read_string, check_padding) + + key_type, decrypted = import_openssh_private_generic(data, password) + + eddsa_keys = { + "ssh-ed25519": ("Ed25519", _import_ed25519_public_key, 32), + } + + # https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent-04 + if key_type.startswith("ecdsa-sha2"): + + ecdsa_curve_name, decrypted = read_string(decrypted) + if ecdsa_curve_name not in _curves: + raise UnsupportedEccFeature("Unsupported ECC curve %s" % ecdsa_curve_name) + curve = _curves[ecdsa_curve_name] + modulus_bytes = (curve.modulus_bits + 7) // 8 + + public_key, decrypted = read_bytes(decrypted) + + if bord(public_key[0]) != 4: + raise ValueError("Only uncompressed OpenSSH EC keys are supported") + if len(public_key) != 2 * modulus_bytes + 1: + raise ValueError("Incorrect public key length") + + point_x = Integer.from_bytes(public_key[1:1+modulus_bytes]) + point_y = Integer.from_bytes(public_key[1+modulus_bytes:]) + + private_key, decrypted = read_bytes(decrypted) + d = Integer.from_bytes(private_key) + + params = {'d': d, 'curve': ecdsa_curve_name} + + elif key_type in eddsa_keys: + + curve_name, import_eddsa_public_key, seed_len = eddsa_keys[key_type] + + public_key, decrypted = read_bytes(decrypted) + point_x, point_y = import_eddsa_public_key(public_key) + + private_public_key, decrypted = read_bytes(decrypted) + seed = private_public_key[:seed_len] + + params = {'seed': seed, 'curve': curve_name} + else: + raise ValueError("Unsupport SSH agent key type:" + key_type) + + _, padded = read_string(decrypted) # Comment + check_padding(padded) + + return construct(point_x=point_x, point_y=point_y, **params) + + +def _import_ed25519_public_key(encoded): + """Import an Ed25519 ECC public key, encoded as raw bytes as described + in RFC8032_. + + Args: + encoded (bytes): + The Ed25519 public key to import. It must be 32 bytes long. + + Returns: + :class:`EccKey` : a new ECC key object + + Raises: + ValueError: when the given key cannot be parsed. + + .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032 + """ + + if len(encoded) != 32: + raise ValueError("Incorrect length. Only Ed25519 public keys are supported.") + + p = Integer(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed) # 2**255 - 19 + d = 37095705934669439343138083508754565189542113879843219016388785533085940283555 + + y = bytearray(encoded) + x_lsb = y[31] >> 7 + y[31] &= 0x7F + point_y = Integer.from_bytes(y, byteorder='little') + if point_y >= p: + raise ValueError("Invalid Ed25519 key (y)") + if point_y == 1: + return 0, 1 + + u = (point_y**2 - 1) % p + v = ((point_y**2 % p) * d + 1) % p + try: + v_inv = v.inverse(p) + x2 = (u * v_inv) % p + point_x = Integer._tonelli_shanks(x2, p) + if (point_x & 1) != x_lsb: + point_x = p - point_x + except ValueError: + raise ValueError("Invalid Ed25519 public key") + return point_x, point_y + + +def _import_ed448_public_key(encoded): + """Import an Ed448 ECC public key, encoded as raw bytes as described + in RFC8032_. + + Args: + encoded (bytes): + The Ed448 public key to import. It must be 57 bytes long. + + Returns: + :class:`EccKey` : a new ECC key object + + Raises: + ValueError: when the given key cannot be parsed. + + .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032 + """ + + if len(encoded) != 57: + raise ValueError("Incorrect length. Only Ed448 public keys are supported.") + + p = Integer(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff) # 2**448 - 2**224 - 1 + d = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756 + + y = encoded[:56] + x_lsb = bord(encoded[56]) >> 7 + point_y = Integer.from_bytes(y, byteorder='little') + if point_y >= p: + raise ValueError("Invalid Ed448 key (y)") + if point_y == 1: + return 0, 1 + + u = (point_y**2 - 1) % p + v = ((point_y**2 % p) * d - 1) % p + try: + v_inv = v.inverse(p) + x2 = (u * v_inv) % p + point_x = Integer._tonelli_shanks(x2, p) + if (point_x & 1) != x_lsb: + point_x = p - point_x + except ValueError: + raise ValueError("Invalid Ed448 public key") + return point_x, point_y + + +def import_key(encoded, passphrase=None, curve_name=None): + """Import an ECC key (public or private). + + Args: + encoded (bytes or multi-line string): + The ECC key to import. + The function will try to automatically detect the right format. + + Supported formats for an ECC **public** key: + + * X.509 certificate: binary (DER) or ASCII (PEM). + * X.509 ``subjectPublicKeyInfo``: binary (DER) or ASCII (PEM). + * SEC1_ (or X9.62), as ``bytes``. NIST P curves only. + You must also provide the ``curve_name`` (with a value from the `ECC table`_) + * OpenSSH line, defined in RFC5656_ and RFC8709_ (ASCII). + This is normally the content of files like ``~/.ssh/id_ecdsa.pub``. + + Supported formats for an ECC **private** key: + + * A binary ``ECPrivateKey`` structure, as defined in `RFC5915`_ (DER). + NIST P curves only. + * A `PKCS#8`_ structure (or the more recent Asymmetric Key Package, RFC5958_): binary (DER) or ASCII (PEM). + * `OpenSSH 6.5`_ and newer versions (ASCII). + + Private keys can be in the clear or password-protected. + + For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. + + passphrase (byte string): + The passphrase to use for decrypting a private key. + Encryption may be applied protected at the PEM level (not recommended) + or at the PKCS#8 level (recommended). + This parameter is ignored if the key in input is not encrypted. + + curve_name (string): + For a SEC1 encoding only. This is the name of the curve, + as defined in the `ECC table`_. + + .. note:: + + To import EdDSA private and public keys, when encoded as raw ``bytes``, use: + + * :func:`Crypto.Signature.eddsa.import_public_key`, or + * :func:`Crypto.Signature.eddsa.import_private_key`. + + Returns: + :class:`EccKey` : a new ECC key object + + Raises: + ValueError: when the given key cannot be parsed (possibly because + the pass phrase is wrong). + + .. _RFC1421: https://datatracker.ietf.org/doc/html/rfc1421 + .. _RFC1423: https://datatracker.ietf.org/doc/html/rfc1423 + .. _RFC5915: https://datatracker.ietf.org/doc/html/rfc5915 + .. _RFC5656: https://datatracker.ietf.org/doc/html/rfc5656 + .. _RFC8709: https://datatracker.ietf.org/doc/html/rfc8709 + .. _RFC5958: https://datatracker.ietf.org/doc/html/rfc5958 + .. _`PKCS#8`: https://datatracker.ietf.org/doc/html/rfc5208 + .. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf + .. _SEC1: https://www.secg.org/sec1-v2.pdf + """ + + from Crypto.IO import PEM + + encoded = tobytes(encoded) + if passphrase is not None: + passphrase = tobytes(passphrase) + + # PEM + if encoded.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'): + text_encoded = tostr(encoded) + openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) + result = _import_openssh_private_ecc(openssh_encoded, passphrase) + return result + + elif encoded.startswith(b'-----'): + + text_encoded = tostr(encoded) + + # Remove any EC PARAMETERS section + # Ignore its content because the curve type must be already given in the key + ecparams_start = "-----BEGIN EC PARAMETERS-----" + ecparams_end = "-----END EC PARAMETERS-----" + text_encoded = re.sub(ecparams_start + ".*?" + ecparams_end, "", + text_encoded, + flags=re.DOTALL) + + der_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) + if enc_flag: + passphrase = None + try: + result = _import_der(der_encoded, passphrase) + except UnsupportedEccFeature as uef: + raise uef + except ValueError: + raise ValueError("Invalid DER encoding inside the PEM file") + return result + + # OpenSSH + if encoded.startswith((b'ecdsa-sha2-', b'ssh-ed25519')): + return _import_openssh_public(encoded) + + # DER + if len(encoded) > 0 and bord(encoded[0]) == 0x30: + return _import_der(encoded, passphrase) + + # SEC1 + if len(encoded) > 0 and bord(encoded[0]) in b'\x02\x03\x04': + if curve_name is None: + raise ValueError("No curve name was provided") + return _import_public_der(encoded, curve_name=curve_name) + + raise ValueError("ECC key format is not supported") + + +if __name__ == "__main__": + + import time + + d = 0xc51e4753afdec1e6b6c6a5b992f43f8dd0c7a8933072708b6522468b2ffb06fd + + point = _curves['p256'].G.copy() + count = 3000 + + start = time.time() + for x in range(count): + pointX = point * d + print("(P-256 G)", (time.time() - start) / count * 1000, "ms") + + start = time.time() + for x in range(count): + pointX = pointX * d + print("(P-256 arbitrary point)", (time.time() - start) / count * 1000, "ms") |