summaryrefslogtreecommitdiffstats
path: root/lib/Crypto/PublicKey/ECC.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Crypto/PublicKey/ECC.py')
-rw-r--r--lib/Crypto/PublicKey/ECC.py1794
1 files changed, 1794 insertions, 0 deletions
diff --git a/lib/Crypto/PublicKey/ECC.py b/lib/Crypto/PublicKey/ECC.py
new file mode 100644
index 0000000..0b605c4
--- /dev/null
+++ b/lib/Crypto/PublicKey/ECC.py
@@ -0,0 +1,1794 @@
+# ===================================================================
+#
+# Copyright (c) 2015, Legrandin <helderijs@gmail.com>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+from __future__ import print_function
+
+import re
+import struct
+import binascii
+from collections import namedtuple
+
+from Crypto.Util.py3compat import bord, tobytes, tostr, bchr, is_string
+from Crypto.Util.number import bytes_to_long, long_to_bytes
+
+from Crypto.Math.Numbers import Integer
+from Crypto.Util.asn1 import (DerObjectId, DerOctetString, DerSequence,
+ DerBitString)
+
+from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer,
+ SmartPointer, c_size_t, c_uint8_ptr,
+ c_ulonglong, null_pointer)
+
+from Crypto.PublicKey import (_expand_subject_public_key_info,
+ _create_subject_public_key_info,
+ _extract_subject_public_key_info)
+
+from Crypto.Hash import SHA512, SHAKE256
+
+from Crypto.Random import get_random_bytes
+from Crypto.Random.random import getrandbits
+
+
+_ec_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ec_ws", """
+typedef void EcContext;
+typedef void EcPoint;
+int ec_ws_new_context(EcContext **pec_ctx,
+ const uint8_t *modulus,
+ const uint8_t *b,
+ const uint8_t *order,
+ size_t len,
+ uint64_t seed);
+void ec_free_context(EcContext *ec_ctx);
+int ec_ws_new_point(EcPoint **pecp,
+ const uint8_t *x,
+ const uint8_t *y,
+ size_t len,
+ const EcContext *ec_ctx);
+void ec_ws_free_point(EcPoint *ecp);
+int ec_ws_get_xy(uint8_t *x,
+ uint8_t *y,
+ size_t len,
+ const EcPoint *ecp);
+int ec_ws_double(EcPoint *p);
+int ec_ws_add(EcPoint *ecpa, EcPoint *ecpb);
+int ec_ws_scalar(EcPoint *ecp,
+ const uint8_t *k,
+ size_t len,
+ uint64_t seed);
+int ec_ws_clone(EcPoint **pecp2, const EcPoint *ecp);
+int ec_ws_cmp(const EcPoint *ecp1, const EcPoint *ecp2);
+int ec_ws_neg(EcPoint *p);
+""")
+
+_ed25519_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed25519", """
+typedef void Point;
+int ed25519_new_point(Point **out,
+ const uint8_t x[32],
+ const uint8_t y[32],
+ size_t modsize,
+ const void *context);
+int ed25519_clone(Point **P, const Point *Q);
+void ed25519_free_point(Point *p);
+int ed25519_cmp(const Point *p1, const Point *p2);
+int ed25519_neg(Point *p);
+int ed25519_get_xy(uint8_t *xb, uint8_t *yb, size_t modsize, Point *p);
+int ed25519_double(Point *p);
+int ed25519_add(Point *P1, const Point *P2);
+int ed25519_scalar(Point *P, uint8_t *scalar, size_t scalar_len, uint64_t seed);
+""")
+
+_ed448_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed448", """
+typedef void EcContext;
+typedef void PointEd448;
+int ed448_new_context(EcContext **pec_ctx);
+void ed448_context(EcContext *ec_ctx);
+void ed448_free_context(EcContext *ec_ctx);
+int ed448_new_point(PointEd448 **out,
+ const uint8_t x[56],
+ const uint8_t y[56],
+ size_t len,
+ const EcContext *context);
+int ed448_clone(PointEd448 **P, const PointEd448 *Q);
+void ed448_free_point(PointEd448 *p);
+int ed448_cmp(const PointEd448 *p1, const PointEd448 *p2);
+int ed448_neg(PointEd448 *p);
+int ed448_get_xy(uint8_t *xb, uint8_t *yb, size_t len, const PointEd448 *p);
+int ed448_double(PointEd448 *p);
+int ed448_add(PointEd448 *P1, const PointEd448 *P2);
+int ed448_scalar(PointEd448 *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed);
+""")
+
+
+def lib_func(ecc_obj, func_name):
+ if ecc_obj._curve.desc == "Ed25519":
+ result = getattr(_ed25519_lib, "ed25519_" + func_name)
+ elif ecc_obj._curve.desc == "Ed448":
+ result = getattr(_ed448_lib, "ed448_" + func_name)
+ else:
+ result = getattr(_ec_lib, "ec_ws_" + func_name)
+ return result
+
+#
+# _curves is a database of curve parameters. Items are indexed by their
+# human-friendly name, suchas "P-256". Each item has the following fields:
+# - p: the prime number that defines the finite field for all modulo operations
+# - b: the constant in the Short Weierstrass curve equation
+# - order: the number of elements in the group with the generator below
+# - Gx the affine coordinate X of the generator point
+# - Gy the affine coordinate Y of the generator point
+# - G the generator, as an EccPoint object
+# - modulus_bits the minimum number of bits for encoding the modulus p
+# - oid an ASCII string with the registered ASN.1 Object ID
+# - context a raw pointer to memory holding a context for all curve operations (can be NULL)
+# - desc an ASCII string describing the curve
+# - openssh the ASCII string used in OpenSSH id files for public keys on this curve
+# - name the ASCII string which is also a valid key in _curves
+
+
+_Curve = namedtuple("_Curve", "p b order Gx Gy G modulus_bits oid context desc openssh name")
+_curves = {}
+
+
+p192_names = ["p192", "NIST P-192", "P-192", "prime192v1", "secp192r1",
+ "nistp192"]
+
+
+def init_p192():
+ p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff
+ b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
+ order = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831
+ Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
+ Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
+
+ p192_modulus = long_to_bytes(p, 24)
+ p192_b = long_to_bytes(b, 24)
+ p192_order = long_to_bytes(order, 24)
+
+ ec_p192_context = VoidPointer()
+ result = _ec_lib.ec_ws_new_context(ec_p192_context.address_of(),
+ c_uint8_ptr(p192_modulus),
+ c_uint8_ptr(p192_b),
+ c_uint8_ptr(p192_order),
+ c_size_t(len(p192_modulus)),
+ c_ulonglong(getrandbits(64))
+ )
+ if result:
+ raise ImportError("Error %d initializing P-192 context" % result)
+
+ context = SmartPointer(ec_p192_context.get(), _ec_lib.ec_free_context)
+ p192 = _Curve(Integer(p),
+ Integer(b),
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 192,
+ "1.2.840.10045.3.1.1", # ANSI X9.62 / SEC2
+ context,
+ "NIST P-192",
+ "ecdsa-sha2-nistp192",
+ "p192")
+ global p192_names
+ _curves.update(dict.fromkeys(p192_names, p192))
+
+
+init_p192()
+del init_p192
+
+
+p224_names = ["p224", "NIST P-224", "P-224", "prime224v1", "secp224r1",
+ "nistp224"]
+
+
+def init_p224():
+ p = 0xffffffffffffffffffffffffffffffff000000000000000000000001
+ b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
+ order = 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d
+ Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
+ Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34
+
+ p224_modulus = long_to_bytes(p, 28)
+ p224_b = long_to_bytes(b, 28)
+ p224_order = long_to_bytes(order, 28)
+
+ ec_p224_context = VoidPointer()
+ result = _ec_lib.ec_ws_new_context(ec_p224_context.address_of(),
+ c_uint8_ptr(p224_modulus),
+ c_uint8_ptr(p224_b),
+ c_uint8_ptr(p224_order),
+ c_size_t(len(p224_modulus)),
+ c_ulonglong(getrandbits(64))
+ )
+ if result:
+ raise ImportError("Error %d initializing P-224 context" % result)
+
+ context = SmartPointer(ec_p224_context.get(), _ec_lib.ec_free_context)
+ p224 = _Curve(Integer(p),
+ Integer(b),
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 224,
+ "1.3.132.0.33", # SEC 2
+ context,
+ "NIST P-224",
+ "ecdsa-sha2-nistp224",
+ "p224")
+ global p224_names
+ _curves.update(dict.fromkeys(p224_names, p224))
+
+
+init_p224()
+del init_p224
+
+
+p256_names = ["p256", "NIST P-256", "P-256", "prime256v1", "secp256r1",
+ "nistp256"]
+
+
+def init_p256():
+ p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff
+ b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
+ order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
+ Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
+ Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
+
+ p256_modulus = long_to_bytes(p, 32)
+ p256_b = long_to_bytes(b, 32)
+ p256_order = long_to_bytes(order, 32)
+
+ ec_p256_context = VoidPointer()
+ result = _ec_lib.ec_ws_new_context(ec_p256_context.address_of(),
+ c_uint8_ptr(p256_modulus),
+ c_uint8_ptr(p256_b),
+ c_uint8_ptr(p256_order),
+ c_size_t(len(p256_modulus)),
+ c_ulonglong(getrandbits(64))
+ )
+ if result:
+ raise ImportError("Error %d initializing P-256 context" % result)
+
+ context = SmartPointer(ec_p256_context.get(), _ec_lib.ec_free_context)
+ p256 = _Curve(Integer(p),
+ Integer(b),
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 256,
+ "1.2.840.10045.3.1.7", # ANSI X9.62 / SEC2
+ context,
+ "NIST P-256",
+ "ecdsa-sha2-nistp256",
+ "p256")
+ global p256_names
+ _curves.update(dict.fromkeys(p256_names, p256))
+
+
+init_p256()
+del init_p256
+
+
+p384_names = ["p384", "NIST P-384", "P-384", "prime384v1", "secp384r1",
+ "nistp384"]
+
+
+def init_p384():
+ p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff
+ b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
+ order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973
+ Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760aB7
+ Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5F
+
+ p384_modulus = long_to_bytes(p, 48)
+ p384_b = long_to_bytes(b, 48)
+ p384_order = long_to_bytes(order, 48)
+
+ ec_p384_context = VoidPointer()
+ result = _ec_lib.ec_ws_new_context(ec_p384_context.address_of(),
+ c_uint8_ptr(p384_modulus),
+ c_uint8_ptr(p384_b),
+ c_uint8_ptr(p384_order),
+ c_size_t(len(p384_modulus)),
+ c_ulonglong(getrandbits(64))
+ )
+ if result:
+ raise ImportError("Error %d initializing P-384 context" % result)
+
+ context = SmartPointer(ec_p384_context.get(), _ec_lib.ec_free_context)
+ p384 = _Curve(Integer(p),
+ Integer(b),
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 384,
+ "1.3.132.0.34", # SEC 2
+ context,
+ "NIST P-384",
+ "ecdsa-sha2-nistp384",
+ "p384")
+ global p384_names
+ _curves.update(dict.fromkeys(p384_names, p384))
+
+
+init_p384()
+del init_p384
+
+
+p521_names = ["p521", "NIST P-521", "P-521", "prime521v1", "secp521r1",
+ "nistp521"]
+
+
+def init_p521():
+ p = 0x000001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
+ b = 0x00000051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
+ order = 0x000001fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
+ Gx = 0x000000c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
+ Gy = 0x0000011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650
+
+ p521_modulus = long_to_bytes(p, 66)
+ p521_b = long_to_bytes(b, 66)
+ p521_order = long_to_bytes(order, 66)
+
+ ec_p521_context = VoidPointer()
+ result = _ec_lib.ec_ws_new_context(ec_p521_context.address_of(),
+ c_uint8_ptr(p521_modulus),
+ c_uint8_ptr(p521_b),
+ c_uint8_ptr(p521_order),
+ c_size_t(len(p521_modulus)),
+ c_ulonglong(getrandbits(64))
+ )
+ if result:
+ raise ImportError("Error %d initializing P-521 context" % result)
+
+ context = SmartPointer(ec_p521_context.get(), _ec_lib.ec_free_context)
+ p521 = _Curve(Integer(p),
+ Integer(b),
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 521,
+ "1.3.132.0.35", # SEC 2
+ context,
+ "NIST P-521",
+ "ecdsa-sha2-nistp521",
+ "p521")
+ global p521_names
+ _curves.update(dict.fromkeys(p521_names, p521))
+
+
+init_p521()
+del init_p521
+
+
+ed25519_names = ["ed25519", "Ed25519"]
+
+
+def init_ed25519():
+ p = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed # 2**255 - 19
+ order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
+ Gx = 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a
+ Gy = 0x6666666666666666666666666666666666666666666666666666666666666658
+
+ ed25519 = _Curve(Integer(p),
+ None,
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 255,
+ "1.3.101.112", # RFC8410
+ None,
+ "Ed25519", # Used throughout; do not change
+ "ssh-ed25519",
+ "ed25519")
+ global ed25519_names
+ _curves.update(dict.fromkeys(ed25519_names, ed25519))
+
+
+init_ed25519()
+del init_ed25519
+
+
+ed448_names = ["ed448", "Ed448"]
+
+
+def init_ed448():
+ p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff # 2**448 - 2**224 - 1
+ order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3
+ Gx = 0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e
+ Gy = 0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14
+
+ ed448_context = VoidPointer()
+ result = _ed448_lib.ed448_new_context(ed448_context.address_of())
+ if result:
+ raise ImportError("Error %d initializing Ed448 context" % result)
+
+ context = SmartPointer(ed448_context.get(), _ed448_lib.ed448_free_context)
+
+ ed448 = _Curve(Integer(p),
+ None,
+ Integer(order),
+ Integer(Gx),
+ Integer(Gy),
+ None,
+ 448,
+ "1.3.101.113", # RFC8410
+ context,
+ "Ed448", # Used throughout; do not change
+ None,
+ "ed448")
+ global ed448_names
+ _curves.update(dict.fromkeys(ed448_names, ed448))
+
+
+init_ed448()
+del init_ed448
+
+
+class UnsupportedEccFeature(ValueError):
+ pass
+
+
+class EccPoint(object):
+ """A class to model a point on an Elliptic Curve.
+
+ The class supports operators for:
+
+ * Adding two points: ``R = S + T``
+ * In-place addition: ``S += T``
+ * Negating a point: ``R = -T``
+ * Comparing two points: ``if S == T: ...`` or ``if S != T: ...``
+ * Multiplying a point by a scalar: ``R = S*k``
+ * In-place multiplication by a scalar: ``T *= k``
+
+ :ivar x: The affine X-coordinate of the ECC point
+ :vartype x: integer
+
+ :ivar y: The affine Y-coordinate of the ECC point
+ :vartype y: integer
+
+ :ivar xy: The tuple with affine X- and Y- coordinates
+ """
+
+ def __init__(self, x, y, curve="p256"):
+
+ try:
+ self._curve = _curves[curve]
+ except KeyError:
+ raise ValueError("Unknown curve name %s" % str(curve))
+ self._curve_name = curve
+
+ modulus_bytes = self.size_in_bytes()
+
+ xb = long_to_bytes(x, modulus_bytes)
+ yb = long_to_bytes(y, modulus_bytes)
+ if len(xb) != modulus_bytes or len(yb) != modulus_bytes:
+ raise ValueError("Incorrect coordinate length")
+
+ new_point = lib_func(self, "new_point")
+ free_func = lib_func(self, "free_point")
+
+ self._point = VoidPointer()
+ try:
+ context = self._curve.context.get()
+ except AttributeError:
+ context = null_pointer
+ result = new_point(self._point.address_of(),
+ c_uint8_ptr(xb),
+ c_uint8_ptr(yb),
+ c_size_t(modulus_bytes),
+ context)
+
+ if result:
+ if result == 15:
+ raise ValueError("The EC point does not belong to the curve")
+ raise ValueError("Error %d while instantiating an EC point" % result)
+
+ # Ensure that object disposal of this Python object will (eventually)
+ # free the memory allocated by the raw library for the EC point
+ self._point = SmartPointer(self._point.get(), free_func)
+
+ def set(self, point):
+ clone = lib_func(self, "clone")
+ free_func = lib_func(self, "free_point")
+
+ self._point = VoidPointer()
+ result = clone(self._point.address_of(),
+ point._point.get())
+
+ if result:
+ raise ValueError("Error %d while cloning an EC point" % result)
+
+ self._point = SmartPointer(self._point.get(), free_func)
+ return self
+
+ def __eq__(self, point):
+ cmp_func = lib_func(self, "cmp")
+ return 0 == cmp_func(self._point.get(), point._point.get())
+
+ # Only needed for Python 2
+ def __ne__(self, point):
+ return not self == point
+
+ def __neg__(self):
+ neg_func = lib_func(self, "neg")
+ np = self.copy()
+ result = neg_func(np._point.get())
+ if result:
+ raise ValueError("Error %d while inverting an EC point" % result)
+ return np
+
+ def copy(self):
+ """Return a copy of this point."""
+ x, y = self.xy
+ np = EccPoint(x, y, self._curve_name)
+ return np
+
+ def _is_eddsa(self):
+ return self._curve.name in ("ed25519", "ed448")
+
+ def is_point_at_infinity(self):
+ """``True`` if this is the *point-at-infinity*."""
+
+ if self._is_eddsa():
+ return self.x == 0
+ else:
+ return self.xy == (0, 0)
+
+ def point_at_infinity(self):
+ """Return the *point-at-infinity* for the curve."""
+
+ if self._is_eddsa():
+ return EccPoint(0, 1, self._curve_name)
+ else:
+ return EccPoint(0, 0, self._curve_name)
+
+ @property
+ def x(self):
+ return self.xy[0]
+
+ @property
+ def y(self):
+ return self.xy[1]
+
+ @property
+ def xy(self):
+ modulus_bytes = self.size_in_bytes()
+ xb = bytearray(modulus_bytes)
+ yb = bytearray(modulus_bytes)
+ get_xy = lib_func(self, "get_xy")
+ result = get_xy(c_uint8_ptr(xb),
+ c_uint8_ptr(yb),
+ c_size_t(modulus_bytes),
+ self._point.get())
+ if result:
+ raise ValueError("Error %d while encoding an EC point" % result)
+
+ return (Integer(bytes_to_long(xb)), Integer(bytes_to_long(yb)))
+
+ def size_in_bytes(self):
+ """Size of each coordinate, in bytes."""
+ return (self.size_in_bits() + 7) // 8
+
+ def size_in_bits(self):
+ """Size of each coordinate, in bits."""
+ return self._curve.modulus_bits
+
+ def double(self):
+ """Double this point (in-place operation).
+
+ Returns:
+ This same object (to enable chaining).
+ """
+
+ double_func = lib_func(self, "double")
+ result = double_func(self._point.get())
+ if result:
+ raise ValueError("Error %d while doubling an EC point" % result)
+ return self
+
+ def __iadd__(self, point):
+ """Add a second point to this one"""
+
+ add_func = lib_func(self, "add")
+ result = add_func(self._point.get(), point._point.get())
+ if result:
+ if result == 16:
+ raise ValueError("EC points are not on the same curve")
+ raise ValueError("Error %d while adding two EC points" % result)
+ return self
+
+ def __add__(self, point):
+ """Return a new point, the addition of this one and another"""
+
+ np = self.copy()
+ np += point
+ return np
+
+ def __imul__(self, scalar):
+ """Multiply this point by a scalar"""
+
+ scalar_func = lib_func(self, "scalar")
+ if scalar < 0:
+ raise ValueError("Scalar multiplication is only defined for non-negative integers")
+ sb = long_to_bytes(scalar)
+ result = scalar_func(self._point.get(),
+ c_uint8_ptr(sb),
+ c_size_t(len(sb)),
+ c_ulonglong(getrandbits(64)))
+ if result:
+ raise ValueError("Error %d during scalar multiplication" % result)
+ return self
+
+ def __mul__(self, scalar):
+ """Return a new point, the scalar product of this one"""
+
+ np = self.copy()
+ np *= scalar
+ return np
+
+ def __rmul__(self, left_hand):
+ return self.__mul__(left_hand)
+
+
+# Last piece of initialization
+p192_G = EccPoint(_curves['p192'].Gx, _curves['p192'].Gy, "p192")
+p192 = _curves['p192']._replace(G=p192_G)
+_curves.update(dict.fromkeys(p192_names, p192))
+del p192_G, p192, p192_names
+
+p224_G = EccPoint(_curves['p224'].Gx, _curves['p224'].Gy, "p224")
+p224 = _curves['p224']._replace(G=p224_G)
+_curves.update(dict.fromkeys(p224_names, p224))
+del p224_G, p224, p224_names
+
+p256_G = EccPoint(_curves['p256'].Gx, _curves['p256'].Gy, "p256")
+p256 = _curves['p256']._replace(G=p256_G)
+_curves.update(dict.fromkeys(p256_names, p256))
+del p256_G, p256, p256_names
+
+p384_G = EccPoint(_curves['p384'].Gx, _curves['p384'].Gy, "p384")
+p384 = _curves['p384']._replace(G=p384_G)
+_curves.update(dict.fromkeys(p384_names, p384))
+del p384_G, p384, p384_names
+
+p521_G = EccPoint(_curves['p521'].Gx, _curves['p521'].Gy, "p521")
+p521 = _curves['p521']._replace(G=p521_G)
+_curves.update(dict.fromkeys(p521_names, p521))
+del p521_G, p521, p521_names
+
+ed25519_G = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, "Ed25519")
+ed25519 = _curves['Ed25519']._replace(G=ed25519_G)
+_curves.update(dict.fromkeys(ed25519_names, ed25519))
+del ed25519_G, ed25519, ed25519_names
+
+ed448_G = EccPoint(_curves['Ed448'].Gx, _curves['Ed448'].Gy, "Ed448")
+ed448 = _curves['Ed448']._replace(G=ed448_G)
+_curves.update(dict.fromkeys(ed448_names, ed448))
+del ed448_G, ed448, ed448_names
+
+
+class EccKey(object):
+ r"""Class defining an ECC key.
+ Do not instantiate directly.
+ Use :func:`generate`, :func:`construct` or :func:`import_key` instead.
+
+ :ivar curve: The name of the curve as defined in the `ECC table`_.
+ :vartype curve: string
+
+ :ivar pointQ: an ECC point representating the public component.
+ :vartype pointQ: :class:`EccPoint`
+
+ :ivar d: A scalar that represents the private component
+ in NIST P curves. It is smaller than the
+ order of the generator point.
+ :vartype d: integer
+
+ :ivar seed: A seed that representats the private component
+ in EdDSA curves
+ (Ed25519, 32 bytes; Ed448, 57 bytes).
+ :vartype seed: bytes
+ """
+
+ def __init__(self, **kwargs):
+ """Create a new ECC key
+
+ Keywords:
+ curve : string
+ The name of the curve.
+ d : integer
+ Mandatory for a private key one NIST P curves.
+ It must be in the range ``[1..order-1]``.
+ seed : bytes
+ Mandatory for a private key on the Ed25519 (32 bytes)
+ or Ed448 (57 bytes) curve.
+ point : EccPoint
+ Mandatory for a public key. If provided for a private key,
+ the implementation will NOT check whether it matches ``d``.
+
+ Only one parameter among ``d``, ``seed`` or ``point`` may be used.
+ """
+
+ kwargs_ = dict(kwargs)
+ curve_name = kwargs_.pop("curve", None)
+ self._d = kwargs_.pop("d", None)
+ self._seed = kwargs_.pop("seed", None)
+ self._point = kwargs_.pop("point", None)
+ if curve_name is None and self._point:
+ curve_name = self._point._curve_name
+ if kwargs_:
+ raise TypeError("Unknown parameters: " + str(kwargs_))
+
+ if curve_name not in _curves:
+ raise ValueError("Unsupported curve (%s)" % curve_name)
+ self._curve = _curves[curve_name]
+ self.curve = curve_name
+
+ count = int(self._d is not None) + int(self._seed is not None)
+
+ if count == 0:
+ if self._point is None:
+ raise ValueError("At lest one between parameters 'point', 'd' or 'seed' must be specified")
+ return
+
+ if count == 2:
+ raise ValueError("Parameters d and seed are mutually exclusive")
+
+ # NIST P curves work with d, EdDSA works with seed
+
+ if not self._is_eddsa():
+ if self._seed is not None:
+ raise ValueError("Parameter 'seed' can only be used with Ed25519 or Ed448")
+ self._d = Integer(self._d)
+ if not 1 <= self._d < self._curve.order:
+ raise ValueError("Parameter d must be an integer smaller than the curve order")
+ else:
+ if self._d is not None:
+ raise ValueError("Parameter d can only be used with NIST P curves")
+ # RFC 8032, 5.1.5
+ if self._curve.name == "ed25519":
+ if len(self._seed) != 32:
+ raise ValueError("Parameter seed must be 32 bytes long for Ed25519")
+ seed_hash = SHA512.new(self._seed).digest() # h
+ self._prefix = seed_hash[32:]
+ tmp = bytearray(seed_hash[:32])
+ tmp[0] &= 0xF8
+ tmp[31] = (tmp[31] & 0x7F) | 0x40
+ # RFC 8032, 5.2.5
+ elif self._curve.name == "ed448":
+ if len(self._seed) != 57:
+ raise ValueError("Parameter seed must be 57 bytes long for Ed448")
+ seed_hash = SHAKE256.new(self._seed).read(114) # h
+ self._prefix = seed_hash[57:]
+ tmp = bytearray(seed_hash[:57])
+ tmp[0] &= 0xFC
+ tmp[55] |= 0x80
+ tmp[56] = 0
+ self._d = Integer.from_bytes(tmp, byteorder='little')
+
+ def _is_eddsa(self):
+ return self._curve.desc in ("Ed25519", "Ed448")
+
+ def __eq__(self, other):
+ if other.has_private() != self.has_private():
+ return False
+
+ return other.pointQ == self.pointQ
+
+ def __repr__(self):
+ if self.has_private():
+ if self._is_eddsa():
+ extra = ", seed=%s" % self._seed.hex()
+ else:
+ extra = ", d=%d" % int(self._d)
+ else:
+ extra = ""
+ x, y = self.pointQ.xy
+ return "EccKey(curve='%s', point_x=%d, point_y=%d%s)" % (self._curve.desc, x, y, extra)
+
+ def has_private(self):
+ """``True`` if this key can be used for making signatures or decrypting data."""
+
+ return self._d is not None
+
+ # ECDSA
+ def _sign(self, z, k):
+ assert 0 < k < self._curve.order
+
+ order = self._curve.order
+ blind = Integer.random_range(min_inclusive=1,
+ max_exclusive=order)
+
+ blind_d = self._d * blind
+ inv_blind_k = (blind * k).inverse(order)
+
+ r = (self._curve.G * k).x % order
+ s = inv_blind_k * (blind * z + blind_d * r) % order
+ return (r, s)
+
+ # ECDSA
+ def _verify(self, z, rs):
+ order = self._curve.order
+ sinv = rs[1].inverse(order)
+ point1 = self._curve.G * ((sinv * z) % order)
+ point2 = self.pointQ * ((sinv * rs[0]) % order)
+ return (point1 + point2).x == rs[0]
+
+ @property
+ def d(self):
+ if not self.has_private():
+ raise ValueError("This is not a private ECC key")
+ return self._d
+
+ @property
+ def seed(self):
+ if not self.has_private():
+ raise ValueError("This is not a private ECC key")
+ return self._seed
+
+ @property
+ def pointQ(self):
+ if self._point is None:
+ self._point = self._curve.G * self._d
+ return self._point
+
+ def public_key(self):
+ """A matching ECC public key.
+
+ Returns:
+ a new :class:`EccKey` object
+ """
+
+ return EccKey(curve=self._curve.desc, point=self.pointQ)
+
+ def _export_SEC1(self, compress):
+ if self._is_eddsa():
+ raise ValueError("SEC1 format is unsupported for EdDSA curves")
+
+ # See 2.2 in RFC5480 and 2.3.3 in SEC1
+ #
+ # The first byte is:
+ # - 0x02: compressed, only X-coordinate, Y-coordinate is even
+ # - 0x03: compressed, only X-coordinate, Y-coordinate is odd
+ # - 0x04: uncompressed, X-coordinate is followed by Y-coordinate
+ #
+ # PAI is in theory encoded as 0x00.
+
+ modulus_bytes = self.pointQ.size_in_bytes()
+
+ if compress:
+ if self.pointQ.y.is_odd():
+ first_byte = b'\x03'
+ else:
+ first_byte = b'\x02'
+ public_key = (first_byte +
+ self.pointQ.x.to_bytes(modulus_bytes))
+ else:
+ public_key = (b'\x04' +
+ self.pointQ.x.to_bytes(modulus_bytes) +
+ self.pointQ.y.to_bytes(modulus_bytes))
+ return public_key
+
+ def _export_eddsa(self):
+ x, y = self.pointQ.xy
+ if self._curve.name == "ed25519":
+ result = bytearray(y.to_bytes(32, byteorder='little'))
+ result[31] = ((x & 1) << 7) | result[31]
+ elif self._curve.name == "ed448":
+ result = bytearray(y.to_bytes(57, byteorder='little'))
+ result[56] = (x & 1) << 7
+ else:
+ raise ValueError("Not an EdDSA key to export")
+ return bytes(result)
+
+ def _export_subjectPublicKeyInfo(self, compress):
+ if self._is_eddsa():
+ oid = self._curve.oid
+ public_key = self._export_eddsa()
+ params = None
+ else:
+ oid = "1.2.840.10045.2.1" # unrestricted
+ public_key = self._export_SEC1(compress)
+ params = DerObjectId(self._curve.oid)
+
+ return _create_subject_public_key_info(oid,
+ public_key,
+ params)
+
+ def _export_rfc5915_private_der(self, include_ec_params=True):
+
+ assert self.has_private()
+
+ # ECPrivateKey ::= SEQUENCE {
+ # version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+ # privateKey OCTET STRING,
+ # parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+ # publicKey [1] BIT STRING OPTIONAL
+ # }
+
+ # Public key - uncompressed form
+ modulus_bytes = self.pointQ.size_in_bytes()
+ public_key = (b'\x04' +
+ self.pointQ.x.to_bytes(modulus_bytes) +
+ self.pointQ.y.to_bytes(modulus_bytes))
+
+ seq = [1,
+ DerOctetString(self.d.to_bytes(modulus_bytes)),
+ DerObjectId(self._curve.oid, explicit=0),
+ DerBitString(public_key, explicit=1)]
+
+ if not include_ec_params:
+ del seq[2]
+
+ return DerSequence(seq).encode()
+
+ def _export_pkcs8(self, **kwargs):
+ from Crypto.IO import PKCS8
+
+ if kwargs.get('passphrase', None) is not None and 'protection' not in kwargs:
+ raise ValueError("At least the 'protection' parameter should be present")
+
+ if self._is_eddsa():
+ oid = self._curve.oid
+ private_key = DerOctetString(self._seed).encode()
+ params = None
+ else:
+ oid = "1.2.840.10045.2.1" # unrestricted
+ private_key = self._export_rfc5915_private_der(include_ec_params=False)
+ params = DerObjectId(self._curve.oid)
+
+ result = PKCS8.wrap(private_key,
+ oid,
+ key_params=params,
+ **kwargs)
+ return result
+
+ def _export_public_pem(self, compress):
+ from Crypto.IO import PEM
+
+ encoded_der = self._export_subjectPublicKeyInfo(compress)
+ return PEM.encode(encoded_der, "PUBLIC KEY")
+
+ def _export_private_pem(self, passphrase, **kwargs):
+ from Crypto.IO import PEM
+
+ encoded_der = self._export_rfc5915_private_der()
+ return PEM.encode(encoded_der, "EC PRIVATE KEY", passphrase, **kwargs)
+
+ def _export_private_clear_pkcs8_in_clear_pem(self):
+ from Crypto.IO import PEM
+
+ encoded_der = self._export_pkcs8()
+ return PEM.encode(encoded_der, "PRIVATE KEY")
+
+ def _export_private_encrypted_pkcs8_in_clear_pem(self, passphrase, **kwargs):
+ from Crypto.IO import PEM
+
+ assert passphrase
+ if 'protection' not in kwargs:
+ raise ValueError("At least the 'protection' parameter should be present")
+ encoded_der = self._export_pkcs8(passphrase=passphrase, **kwargs)
+ return PEM.encode(encoded_der, "ENCRYPTED PRIVATE KEY")
+
+ def _export_openssh(self, compress):
+ if self.has_private():
+ raise ValueError("Cannot export OpenSSH private keys")
+
+ desc = self._curve.openssh
+
+ if desc is None:
+ raise ValueError("Cannot export %s keys as OpenSSH" % self._curve.name)
+ elif desc == "ssh-ed25519":
+ public_key = self._export_eddsa()
+ comps = (tobytes(desc), tobytes(public_key))
+ else:
+ modulus_bytes = self.pointQ.size_in_bytes()
+
+ if compress:
+ first_byte = 2 + self.pointQ.y.is_odd()
+ public_key = (bchr(first_byte) +
+ self.pointQ.x.to_bytes(modulus_bytes))
+ else:
+ public_key = (b'\x04' +
+ self.pointQ.x.to_bytes(modulus_bytes) +
+ self.pointQ.y.to_bytes(modulus_bytes))
+
+ middle = desc.split("-")[2]
+ comps = (tobytes(desc), tobytes(middle), public_key)
+
+ blob = b"".join([struct.pack(">I", len(x)) + x for x in comps])
+ return desc + " " + tostr(binascii.b2a_base64(blob))
+
+ def export_key(self, **kwargs):
+ """Export this ECC key.
+
+ Args:
+ format (string):
+ The format to use for encoding the key:
+
+ - ``'DER'``. The key will be encoded in ASN.1 DER format (binary).
+ For a public key, the ASN.1 ``subjectPublicKeyInfo`` structure
+ defined in `RFC5480`_ will be used.
+ For a private key, the ASN.1 ``ECPrivateKey`` structure defined
+ in `RFC5915`_ is used instead (possibly within a PKCS#8 envelope,
+ see the ``use_pkcs8`` flag below).
+ - ``'PEM'``. The key will be encoded in a PEM_ envelope (ASCII).
+ - ``'OpenSSH'``. The key will be encoded in the OpenSSH_ format
+ (ASCII, public keys only).
+ - ``'SEC1'``. The public key (i.e., the EC point) will be encoded
+ into ``bytes`` according to Section 2.3.3 of `SEC1`_
+ (which is a subset of the older X9.62 ITU standard).
+ Only for NIST P-curves.
+ - ``'raw'``. The public key will be encoded as ``bytes``,
+ without any metadata.
+
+ * For NIST P-curves: equivalent to ``'SEC1'``.
+ * For EdDSA curves: ``bytes`` in the format defined in `RFC8032`_.
+
+ passphrase (byte string or string):
+ The passphrase to use for protecting the private key.
+
+ use_pkcs8 (boolean):
+ Only relevant for private keys.
+
+ If ``True`` (default and recommended), the `PKCS#8`_ representation
+ will be used. It must be ``True`` for EdDSA curves.
+
+ protection (string):
+ When a private key is exported with password-protection
+ and PKCS#8 (both ``DER`` and ``PEM`` formats), this parameter MUST be
+ present and be a valid algorithm supported by :mod:`Crypto.IO.PKCS8`.
+ It is recommended to use ``PBKDF2WithHMAC-SHA1AndAES128-CBC``.
+
+ compress (boolean):
+ If ``True``, the method returns a more compact representation
+ of the public key, with the X-coordinate only.
+
+ If ``False`` (default), the method returns the full public key.
+
+ This parameter is ignored for EdDSA curves, as compression is
+ mandatory.
+
+ .. warning::
+ If you don't provide a passphrase, the private key will be
+ exported in the clear!
+
+ .. note::
+ When exporting a private key with password-protection and `PKCS#8`_
+ (both ``DER`` and ``PEM`` formats), any extra parameters
+ to ``export_key()`` will be passed to :mod:`Crypto.IO.PKCS8`.
+
+ .. _PEM: http://www.ietf.org/rfc/rfc1421.txt
+ .. _`PEM encryption`: http://www.ietf.org/rfc/rfc1423.txt
+ .. _OpenSSH: http://www.openssh.com/txt/rfc5656.txt
+ .. _RFC5480: https://tools.ietf.org/html/rfc5480
+ .. _SEC1: https://www.secg.org/sec1-v2.pdf
+
+ Returns:
+ A multi-line string (for ``'PEM'`` and ``'OpenSSH'``) or
+ ``bytes`` (for ``'DER'``, ``'SEC1'``, and ``'raw'``) with the encoded key.
+ """
+
+ args = kwargs.copy()
+ ext_format = args.pop("format")
+ if ext_format not in ("PEM", "DER", "OpenSSH", "SEC1", "raw"):
+ raise ValueError("Unknown format '%s'" % ext_format)
+
+ compress = args.pop("compress", False)
+
+ if self.has_private():
+ passphrase = args.pop("passphrase", None)
+ if is_string(passphrase):
+ passphrase = tobytes(passphrase)
+ if not passphrase:
+ raise ValueError("Empty passphrase")
+ use_pkcs8 = args.pop("use_pkcs8", True)
+
+ if not use_pkcs8 and self._is_eddsa():
+ raise ValueError("'pkcs8' must be True for EdDSA curves")
+
+ if ext_format == "PEM":
+ if use_pkcs8:
+ if passphrase:
+ return self._export_private_encrypted_pkcs8_in_clear_pem(passphrase, **args)
+ else:
+ return self._export_private_clear_pkcs8_in_clear_pem()
+ else:
+ return self._export_private_pem(passphrase, **args)
+ elif ext_format == "DER":
+ # DER
+ if passphrase and not use_pkcs8:
+ raise ValueError("Private keys can only be encrpyted with DER using PKCS#8")
+ if use_pkcs8:
+ return self._export_pkcs8(passphrase=passphrase, **args)
+ else:
+ return self._export_rfc5915_private_der()
+ else:
+ raise ValueError("Private keys cannot be exported "
+ "in the '%s' format" % ext_format)
+ else: # Public key
+ if args:
+ raise ValueError("Unexpected parameters: '%s'" % args)
+ if ext_format == "PEM":
+ return self._export_public_pem(compress)
+ elif ext_format == "DER":
+ return self._export_subjectPublicKeyInfo(compress)
+ elif ext_format == "SEC1":
+ return self._export_SEC1(compress)
+ elif ext_format == "raw":
+ if self._curve.name in ('ed25519', 'ed448'):
+ return self._export_eddsa()
+ else:
+ return self._export_SEC1(compress)
+ else:
+ return self._export_openssh(compress)
+
+
+def generate(**kwargs):
+ """Generate a new private key on the given curve.
+
+ Args:
+
+ curve (string):
+ Mandatory. It must be a curve name defined in the `ECC table`_.
+
+ randfunc (callable):
+ Optional. The RNG to read randomness from.
+ If ``None``, :func:`Crypto.Random.get_random_bytes` is used.
+ """
+
+ curve_name = kwargs.pop("curve")
+ curve = _curves[curve_name]
+ randfunc = kwargs.pop("randfunc", get_random_bytes)
+ if kwargs:
+ raise TypeError("Unknown parameters: " + str(kwargs))
+
+ if _curves[curve_name].name == "ed25519":
+ seed = randfunc(32)
+ new_key = EccKey(curve=curve_name, seed=seed)
+ elif _curves[curve_name].name == "ed448":
+ seed = randfunc(57)
+ new_key = EccKey(curve=curve_name, seed=seed)
+ else:
+ d = Integer.random_range(min_inclusive=1,
+ max_exclusive=curve.order,
+ randfunc=randfunc)
+ new_key = EccKey(curve=curve_name, d=d)
+
+ return new_key
+
+
+def construct(**kwargs):
+ """Build a new ECC key (private or public) starting
+ from some base components.
+
+ In most cases, you will already have an existing key
+ which you can read in with :func:`import_key` instead
+ of this function.
+
+ Args:
+ curve (string):
+ Mandatory. The name of the elliptic curve, as defined in the `ECC table`_.
+
+ d (integer):
+ Mandatory for a private key and a NIST P-curve (e.g., P-256):
+ the integer in the range ``[1..order-1]`` that represents the key.
+
+ seed (bytes):
+ Mandatory for a private key and an EdDSA curve.
+ It must be 32 bytes for Ed25519, and 57 bytes for Ed448.
+
+ point_x (integer):
+ Mandatory for a public key: the X coordinate (affine) of the ECC point.
+
+ point_y (integer):
+ Mandatory for a public key: the Y coordinate (affine) of the ECC point.
+
+ Returns:
+ :class:`EccKey` : a new ECC key object
+ """
+
+ curve_name = kwargs["curve"]
+ curve = _curves[curve_name]
+ point_x = kwargs.pop("point_x", None)
+ point_y = kwargs.pop("point_y", None)
+
+ if "point" in kwargs:
+ raise TypeError("Unknown keyword: point")
+
+ if None not in (point_x, point_y):
+ # ValueError is raised if the point is not on the curve
+ kwargs["point"] = EccPoint(point_x, point_y, curve_name)
+
+ new_key = EccKey(**kwargs)
+
+ # Validate that the private key matches the public one
+ # because EccKey will not do that automatically
+ if new_key.has_private() and 'point' in kwargs:
+ pub_key = curve.G * new_key.d
+ if pub_key.xy != (point_x, point_y):
+ raise ValueError("Private and public ECC keys do not match")
+
+ return new_key
+
+
+def _import_public_der(ec_point, curve_oid=None, curve_name=None):
+ """Convert an encoded EC point into an EccKey object
+
+ ec_point: byte string with the EC point (SEC1-encoded)
+ curve_oid: string with the name the curve
+ curve_name: string with the OID of the curve
+
+ Either curve_id or curve_name must be specified
+
+ """
+
+ for _curve_name, curve in _curves.items():
+ if curve_oid and curve.oid == curve_oid:
+ break
+ if curve_name == _curve_name:
+ break
+ else:
+ if curve_oid:
+ raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid)
+ else:
+ raise UnsupportedEccFeature("Unsupported ECC curve (%s)" % curve_name)
+
+ # See 2.2 in RFC5480 and 2.3.3 in SEC1
+ # The first byte is:
+ # - 0x02: compressed, only X-coordinate, Y-coordinate is even
+ # - 0x03: compressed, only X-coordinate, Y-coordinate is odd
+ # - 0x04: uncompressed, X-coordinate is followed by Y-coordinate
+ #
+ # PAI is in theory encoded as 0x00.
+
+ modulus_bytes = curve.p.size_in_bytes()
+ point_type = bord(ec_point[0])
+
+ # Uncompressed point
+ if point_type == 0x04:
+ if len(ec_point) != (1 + 2 * modulus_bytes):
+ raise ValueError("Incorrect EC point length")
+ x = Integer.from_bytes(ec_point[1:modulus_bytes+1])
+ y = Integer.from_bytes(ec_point[modulus_bytes+1:])
+ # Compressed point
+ elif point_type in (0x02, 0x03):
+ if len(ec_point) != (1 + modulus_bytes):
+ raise ValueError("Incorrect EC point length")
+ x = Integer.from_bytes(ec_point[1:])
+ # Right now, we only support Short Weierstrass curves
+ y = (x**3 - x*3 + curve.b).sqrt(curve.p)
+ if point_type == 0x02 and y.is_odd():
+ y = curve.p - y
+ if point_type == 0x03 and y.is_even():
+ y = curve.p - y
+ else:
+ raise ValueError("Incorrect EC point encoding")
+
+ return construct(curve=_curve_name, point_x=x, point_y=y)
+
+
+def _import_subjectPublicKeyInfo(encoded, *kwargs):
+ """Convert a subjectPublicKeyInfo into an EccKey object"""
+
+ # See RFC5480
+
+ # Parse the generic subjectPublicKeyInfo structure
+ oid, ec_point, params = _expand_subject_public_key_info(encoded)
+
+ nist_p_oids = (
+ "1.2.840.10045.2.1", # id-ecPublicKey (unrestricted)
+ "1.3.132.1.12", # id-ecDH
+ "1.3.132.1.13" # id-ecMQV
+ )
+ eddsa_oids = {
+ "1.3.101.112": ("Ed25519", _import_ed25519_public_key), # id-Ed25519
+ "1.3.101.113": ("Ed448", _import_ed448_public_key) # id-Ed448
+ }
+
+ if oid in nist_p_oids:
+ # See RFC5480
+
+ # Parameters are mandatory and encoded as ECParameters
+ # ECParameters ::= CHOICE {
+ # namedCurve OBJECT IDENTIFIER
+ # -- implicitCurve NULL
+ # -- specifiedCurve SpecifiedECDomain
+ # }
+ # implicitCurve and specifiedCurve are not supported (as per RFC)
+ if not params:
+ raise ValueError("Missing ECC parameters for ECC OID %s" % oid)
+ try:
+ curve_oid = DerObjectId().decode(params).value
+ except ValueError:
+ raise ValueError("Error decoding namedCurve")
+
+ # ECPoint ::= OCTET STRING
+ return _import_public_der(ec_point, curve_oid=curve_oid)
+
+ elif oid in eddsa_oids:
+ # See RFC8410
+ curve_name, import_eddsa_public_key = eddsa_oids[oid]
+
+ # Parameters must be absent
+ if params:
+ raise ValueError("Unexpected ECC parameters for ECC OID %s" % oid)
+
+ x, y = import_eddsa_public_key(ec_point)
+ return construct(point_x=x, point_y=y, curve=curve_name)
+ else:
+ raise UnsupportedEccFeature("Unsupported ECC OID: %s" % oid)
+
+
+def _import_rfc5915_der(encoded, passphrase, curve_oid=None):
+
+ # See RFC5915 https://tools.ietf.org/html/rfc5915
+ #
+ # ECPrivateKey ::= SEQUENCE {
+ # version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+ # privateKey OCTET STRING,
+ # parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+ # publicKey [1] BIT STRING OPTIONAL
+ # }
+
+ private_key = DerSequence().decode(encoded, nr_elements=(3, 4))
+ if private_key[0] != 1:
+ raise ValueError("Incorrect ECC private key version")
+
+ try:
+ parameters = DerObjectId(explicit=0).decode(private_key[2]).value
+ if curve_oid is not None and parameters != curve_oid:
+ raise ValueError("Curve mismatch")
+ curve_oid = parameters
+ except ValueError:
+ pass
+
+ if curve_oid is None:
+ raise ValueError("No curve found")
+
+ for curve_name, curve in _curves.items():
+ if curve.oid == curve_oid:
+ break
+ else:
+ raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid)
+
+ scalar_bytes = DerOctetString().decode(private_key[1]).payload
+ modulus_bytes = curve.p.size_in_bytes()
+ if len(scalar_bytes) != modulus_bytes:
+ raise ValueError("Private key is too small")
+ d = Integer.from_bytes(scalar_bytes)
+
+ # Decode public key (if any)
+ if len(private_key) == 4:
+ public_key_enc = DerBitString(explicit=1).decode(private_key[3]).value
+ public_key = _import_public_der(public_key_enc, curve_oid=curve_oid)
+ point_x = public_key.pointQ.x
+ point_y = public_key.pointQ.y
+ else:
+ point_x = point_y = None
+
+ return construct(curve=curve_name, d=d, point_x=point_x, point_y=point_y)
+
+
+def _import_pkcs8(encoded, passphrase):
+ from Crypto.IO import PKCS8
+
+ algo_oid, private_key, params = PKCS8.unwrap(encoded, passphrase)
+
+ nist_p_oids = (
+ "1.2.840.10045.2.1", # id-ecPublicKey (unrestricted)
+ "1.3.132.1.12", # id-ecDH
+ "1.3.132.1.13" # id-ecMQV
+ )
+ eddsa_oids = {
+ "1.3.101.112": "Ed25519", # id-Ed25519
+ "1.3.101.113": "Ed448", # id-Ed448
+ }
+
+ if algo_oid in nist_p_oids:
+ curve_oid = DerObjectId().decode(params).value
+ return _import_rfc5915_der(private_key, passphrase, curve_oid)
+ elif algo_oid in eddsa_oids:
+ if params is not None:
+ raise ValueError("EdDSA ECC private key must not have parameters")
+ curve_oid = None
+ seed = DerOctetString().decode(private_key).payload
+ return construct(curve=eddsa_oids[algo_oid], seed=seed)
+ else:
+ raise UnsupportedEccFeature("Unsupported ECC purpose (OID: %s)" % algo_oid)
+
+
+def _import_x509_cert(encoded, *kwargs):
+
+ sp_info = _extract_subject_public_key_info(encoded)
+ return _import_subjectPublicKeyInfo(sp_info)
+
+
+def _import_der(encoded, passphrase):
+
+ try:
+ return _import_subjectPublicKeyInfo(encoded, passphrase)
+ except UnsupportedEccFeature as err:
+ raise err
+ except (ValueError, TypeError, IndexError):
+ pass
+
+ try:
+ return _import_x509_cert(encoded, passphrase)
+ except UnsupportedEccFeature as err:
+ raise err
+ except (ValueError, TypeError, IndexError):
+ pass
+
+ try:
+ return _import_rfc5915_der(encoded, passphrase)
+ except UnsupportedEccFeature as err:
+ raise err
+ except (ValueError, TypeError, IndexError):
+ pass
+
+ try:
+ return _import_pkcs8(encoded, passphrase)
+ except UnsupportedEccFeature as err:
+ raise err
+ except (ValueError, TypeError, IndexError):
+ pass
+
+ raise ValueError("Not an ECC DER key")
+
+
+def _import_openssh_public(encoded):
+ parts = encoded.split(b' ')
+ if len(parts) not in (2, 3):
+ raise ValueError("Not an openssh public key")
+
+ try:
+ keystring = binascii.a2b_base64(parts[1])
+
+ keyparts = []
+ while len(keystring) > 4:
+ lk = struct.unpack(">I", keystring[:4])[0]
+ keyparts.append(keystring[4:4 + lk])
+ keystring = keystring[4 + lk:]
+
+ if parts[0] != keyparts[0]:
+ raise ValueError("Mismatch in openssh public key")
+
+ # NIST P curves
+ if parts[0].startswith(b"ecdsa-sha2-"):
+
+ for curve_name, curve in _curves.items():
+ if curve.openssh is None:
+ continue
+ if not curve.openssh.startswith("ecdsa-sha2"):
+ continue
+ middle = tobytes(curve.openssh.split("-")[2])
+ if keyparts[1] == middle:
+ break
+ else:
+ raise ValueError("Unsupported ECC curve: " + middle)
+
+ ecc_key = _import_public_der(keyparts[2], curve_oid=curve.oid)
+
+ # EdDSA
+ elif parts[0] == b"ssh-ed25519":
+ x, y = _import_ed25519_public_key(keyparts[1])
+ ecc_key = construct(curve="Ed25519", point_x=x, point_y=y)
+ else:
+ raise ValueError("Unsupported SSH key type: " + parts[0])
+
+ except (IndexError, TypeError, binascii.Error):
+ raise ValueError("Error parsing SSH key type: " + parts[0])
+
+ return ecc_key
+
+
+def _import_openssh_private_ecc(data, password):
+
+ from ._openssh import (import_openssh_private_generic,
+ read_bytes, read_string, check_padding)
+
+ key_type, decrypted = import_openssh_private_generic(data, password)
+
+ eddsa_keys = {
+ "ssh-ed25519": ("Ed25519", _import_ed25519_public_key, 32),
+ }
+
+ # https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent-04
+ if key_type.startswith("ecdsa-sha2"):
+
+ ecdsa_curve_name, decrypted = read_string(decrypted)
+ if ecdsa_curve_name not in _curves:
+ raise UnsupportedEccFeature("Unsupported ECC curve %s" % ecdsa_curve_name)
+ curve = _curves[ecdsa_curve_name]
+ modulus_bytes = (curve.modulus_bits + 7) // 8
+
+ public_key, decrypted = read_bytes(decrypted)
+
+ if bord(public_key[0]) != 4:
+ raise ValueError("Only uncompressed OpenSSH EC keys are supported")
+ if len(public_key) != 2 * modulus_bytes + 1:
+ raise ValueError("Incorrect public key length")
+
+ point_x = Integer.from_bytes(public_key[1:1+modulus_bytes])
+ point_y = Integer.from_bytes(public_key[1+modulus_bytes:])
+
+ private_key, decrypted = read_bytes(decrypted)
+ d = Integer.from_bytes(private_key)
+
+ params = {'d': d, 'curve': ecdsa_curve_name}
+
+ elif key_type in eddsa_keys:
+
+ curve_name, import_eddsa_public_key, seed_len = eddsa_keys[key_type]
+
+ public_key, decrypted = read_bytes(decrypted)
+ point_x, point_y = import_eddsa_public_key(public_key)
+
+ private_public_key, decrypted = read_bytes(decrypted)
+ seed = private_public_key[:seed_len]
+
+ params = {'seed': seed, 'curve': curve_name}
+ else:
+ raise ValueError("Unsupport SSH agent key type:" + key_type)
+
+ _, padded = read_string(decrypted) # Comment
+ check_padding(padded)
+
+ return construct(point_x=point_x, point_y=point_y, **params)
+
+
+def _import_ed25519_public_key(encoded):
+ """Import an Ed25519 ECC public key, encoded as raw bytes as described
+ in RFC8032_.
+
+ Args:
+ encoded (bytes):
+ The Ed25519 public key to import. It must be 32 bytes long.
+
+ Returns:
+ :class:`EccKey` : a new ECC key object
+
+ Raises:
+ ValueError: when the given key cannot be parsed.
+
+ .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032
+ """
+
+ if len(encoded) != 32:
+ raise ValueError("Incorrect length. Only Ed25519 public keys are supported.")
+
+ p = Integer(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed) # 2**255 - 19
+ d = 37095705934669439343138083508754565189542113879843219016388785533085940283555
+
+ y = bytearray(encoded)
+ x_lsb = y[31] >> 7
+ y[31] &= 0x7F
+ point_y = Integer.from_bytes(y, byteorder='little')
+ if point_y >= p:
+ raise ValueError("Invalid Ed25519 key (y)")
+ if point_y == 1:
+ return 0, 1
+
+ u = (point_y**2 - 1) % p
+ v = ((point_y**2 % p) * d + 1) % p
+ try:
+ v_inv = v.inverse(p)
+ x2 = (u * v_inv) % p
+ point_x = Integer._tonelli_shanks(x2, p)
+ if (point_x & 1) != x_lsb:
+ point_x = p - point_x
+ except ValueError:
+ raise ValueError("Invalid Ed25519 public key")
+ return point_x, point_y
+
+
+def _import_ed448_public_key(encoded):
+ """Import an Ed448 ECC public key, encoded as raw bytes as described
+ in RFC8032_.
+
+ Args:
+ encoded (bytes):
+ The Ed448 public key to import. It must be 57 bytes long.
+
+ Returns:
+ :class:`EccKey` : a new ECC key object
+
+ Raises:
+ ValueError: when the given key cannot be parsed.
+
+ .. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032
+ """
+
+ if len(encoded) != 57:
+ raise ValueError("Incorrect length. Only Ed448 public keys are supported.")
+
+ p = Integer(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff) # 2**448 - 2**224 - 1
+ d = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756
+
+ y = encoded[:56]
+ x_lsb = bord(encoded[56]) >> 7
+ point_y = Integer.from_bytes(y, byteorder='little')
+ if point_y >= p:
+ raise ValueError("Invalid Ed448 key (y)")
+ if point_y == 1:
+ return 0, 1
+
+ u = (point_y**2 - 1) % p
+ v = ((point_y**2 % p) * d - 1) % p
+ try:
+ v_inv = v.inverse(p)
+ x2 = (u * v_inv) % p
+ point_x = Integer._tonelli_shanks(x2, p)
+ if (point_x & 1) != x_lsb:
+ point_x = p - point_x
+ except ValueError:
+ raise ValueError("Invalid Ed448 public key")
+ return point_x, point_y
+
+
+def import_key(encoded, passphrase=None, curve_name=None):
+ """Import an ECC key (public or private).
+
+ Args:
+ encoded (bytes or multi-line string):
+ The ECC key to import.
+ The function will try to automatically detect the right format.
+
+ Supported formats for an ECC **public** key:
+
+ * X.509 certificate: binary (DER) or ASCII (PEM).
+ * X.509 ``subjectPublicKeyInfo``: binary (DER) or ASCII (PEM).
+ * SEC1_ (or X9.62), as ``bytes``. NIST P curves only.
+ You must also provide the ``curve_name`` (with a value from the `ECC table`_)
+ * OpenSSH line, defined in RFC5656_ and RFC8709_ (ASCII).
+ This is normally the content of files like ``~/.ssh/id_ecdsa.pub``.
+
+ Supported formats for an ECC **private** key:
+
+ * A binary ``ECPrivateKey`` structure, as defined in `RFC5915`_ (DER).
+ NIST P curves only.
+ * A `PKCS#8`_ structure (or the more recent Asymmetric Key Package, RFC5958_): binary (DER) or ASCII (PEM).
+ * `OpenSSH 6.5`_ and newer versions (ASCII).
+
+ Private keys can be in the clear or password-protected.
+
+ For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
+
+ passphrase (byte string):
+ The passphrase to use for decrypting a private key.
+ Encryption may be applied protected at the PEM level (not recommended)
+ or at the PKCS#8 level (recommended).
+ This parameter is ignored if the key in input is not encrypted.
+
+ curve_name (string):
+ For a SEC1 encoding only. This is the name of the curve,
+ as defined in the `ECC table`_.
+
+ .. note::
+
+ To import EdDSA private and public keys, when encoded as raw ``bytes``, use:
+
+ * :func:`Crypto.Signature.eddsa.import_public_key`, or
+ * :func:`Crypto.Signature.eddsa.import_private_key`.
+
+ Returns:
+ :class:`EccKey` : a new ECC key object
+
+ Raises:
+ ValueError: when the given key cannot be parsed (possibly because
+ the pass phrase is wrong).
+
+ .. _RFC1421: https://datatracker.ietf.org/doc/html/rfc1421
+ .. _RFC1423: https://datatracker.ietf.org/doc/html/rfc1423
+ .. _RFC5915: https://datatracker.ietf.org/doc/html/rfc5915
+ .. _RFC5656: https://datatracker.ietf.org/doc/html/rfc5656
+ .. _RFC8709: https://datatracker.ietf.org/doc/html/rfc8709
+ .. _RFC5958: https://datatracker.ietf.org/doc/html/rfc5958
+ .. _`PKCS#8`: https://datatracker.ietf.org/doc/html/rfc5208
+ .. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
+ .. _SEC1: https://www.secg.org/sec1-v2.pdf
+ """
+
+ from Crypto.IO import PEM
+
+ encoded = tobytes(encoded)
+ if passphrase is not None:
+ passphrase = tobytes(passphrase)
+
+ # PEM
+ if encoded.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
+ text_encoded = tostr(encoded)
+ openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
+ result = _import_openssh_private_ecc(openssh_encoded, passphrase)
+ return result
+
+ elif encoded.startswith(b'-----'):
+
+ text_encoded = tostr(encoded)
+
+ # Remove any EC PARAMETERS section
+ # Ignore its content because the curve type must be already given in the key
+ ecparams_start = "-----BEGIN EC PARAMETERS-----"
+ ecparams_end = "-----END EC PARAMETERS-----"
+ text_encoded = re.sub(ecparams_start + ".*?" + ecparams_end, "",
+ text_encoded,
+ flags=re.DOTALL)
+
+ der_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
+ if enc_flag:
+ passphrase = None
+ try:
+ result = _import_der(der_encoded, passphrase)
+ except UnsupportedEccFeature as uef:
+ raise uef
+ except ValueError:
+ raise ValueError("Invalid DER encoding inside the PEM file")
+ return result
+
+ # OpenSSH
+ if encoded.startswith((b'ecdsa-sha2-', b'ssh-ed25519')):
+ return _import_openssh_public(encoded)
+
+ # DER
+ if len(encoded) > 0 and bord(encoded[0]) == 0x30:
+ return _import_der(encoded, passphrase)
+
+ # SEC1
+ if len(encoded) > 0 and bord(encoded[0]) in b'\x02\x03\x04':
+ if curve_name is None:
+ raise ValueError("No curve name was provided")
+ return _import_public_der(encoded, curve_name=curve_name)
+
+ raise ValueError("ECC key format is not supported")
+
+
+if __name__ == "__main__":
+
+ import time
+
+ d = 0xc51e4753afdec1e6b6c6a5b992f43f8dd0c7a8933072708b6522468b2ffb06fd
+
+ point = _curves['p256'].G.copy()
+ count = 3000
+
+ start = time.time()
+ for x in range(count):
+ pointX = point * d
+ print("(P-256 G)", (time.time() - start) / count * 1000, "ms")
+
+ start = time.time()
+ for x in range(count):
+ pointX = pointX * d
+ print("(P-256 arbitrary point)", (time.time() - start) / count * 1000, "ms")